Как из алюминиевой проволоки или кабеля сделать своими руками антенну для телевизора: простая конструкция для приема ТВ сигнала. Фрактальная сверхширокополосная антенна на основе кругового монополя Печатный вид изготовления фрактальных антенн

В математике фрактальными называются множества, состоящие из элементов, подобных множеству в целом. Лучший пример: если рассмотреть близко-близко линию эллипса, она станет прямой. Фрактал – сколько не приближай – картинка останется по-прежнему сложной и похожей на общий вид. Элементы расположены причудливым образом. Следовательно, простейшим примером фрактала считаем концентрические окружности. Сколько ни приближай, появляются новые круги. Примеров фракталам множество. К примеру, в Википедии дан рисунок капусты Романеско, где кочан состоит из шишек, в точности напоминающих нарисованный кочан. Теперь читатели понимают, что изготовить фрактальные антенны непросто. Зато интересно.

Зачем нужны фрактальные антенны

Назначение фрактальной антенны – поймать больше меньшими жертвами. В западных видео - возможно найти параболоид, где излучателем послужит отрезок фрактальной ленты. Там уже делают из фольги элементы устройств СВЧ, более эффективные, нежели обыкновенные. Покажем, как сделать фрактальную антенну до конца, а согласованием занимайтесь наедине с КСВ метром. Упомянем, что имеется целый сайт, разумеется, зарубежный, где продвигают в коммерческих целях соответствующий продукт, чертежей нет. Наша самодельная фрактальная антенна проще, главное достоинство – конструкцию удастся сделать собственными руками.

Первые фрактальные антенны - биконические - появились, если верить видео с сайта fractenna.com, в 1897 году Оливером Лоджем. Не ищите в Википедии. В сравнении с обычным диполем пара треугольников вместо вибратора дает расширение полосы на 20%. Создавая периодические повторяющиеся структуры, удалось собрать миниатюрные антенны не хуже больших собратьев. Часто встретите биконическую антенну в виде двух рамок или причудливой формы пластин.

В конечном итоге это позволит принимать больше телевизионных каналов.

Если набрать запрос на Ютуб, появляется видео по изготовлению фрактальных антенн. Лучше поймете, как устроено, если представите шестиконечную звезду израильского флага, у которой угол срезали вместе с плечами. Получилось, три угла остались, у двух одна сторона на месте, второй нет. Шестой угол отсутствует вовсе. Теперь расположим две подобные звезды вертикально, центральными углами друг к другу, прорезями влево и вправо, над ними – аналогичную пару. Получилась антенная решетка – простейшая фрактальная антенна.

Звезды за углы соединяются фидером. Попарно столбцами. Снимается сигнал с линии, ровно посередине каждого провода. Конструкция собирается на болты на диэлектрической (пластиковой) подложке соответствующего размера. Сторона звезды составляет ровно дюйм, расстояние между углами звезд по вертикали (длина фидера) четыре дюйма, по горизонтали (расстояние между двумя проводами фидера) – дюйм. Звезды имеют при вершинах углы 60 градусов, теперь читатель нарисует подобное в виде шаблона, чтобы потом сделать фрактальную антенну самостоятельно. Сделали рабочий эскиз, масштаб не соблюден. Не ручаемся, что звезды вышли ровно, Microsoft Paint без больших возможностей для изготовления точных чертежей. Хватит взглянуть на картинку, чтобы устройство фрактальной антенны стало очевидным:

  1. Коричневым прямоугольником показана подложка из диэлектрика. Приведенная на рисунке фрактальная антенна имеет диаграмму направленности симметричную. Если оградить излучатель от помех, экран ставится на четыре стойки позади подложки на расстоянии дюйма. На частотах нет нужды размещать сплошной лист металла, хватит сетки со стороной в четверть дюйма, не забудьте соединить экран с оплеткой кабеля.
  2. Фидер с волновым сопротивлением 75 Ом требует согласования. Найдите либо сделайте трансформатор, преобразующий 300 Ом в 75 Ом. Лучше запаситесь КСВ метром и подбирайте нужные параметры не на ощупь, а по прибору.
  3. Звезд четыре, выгибайте из медной проволоки. Лаковую изоляцию в месте стыковки с фидером зачистим (если имеется). Внутренний фидер антенны состоит из двух параллельных кусков проволоки. Антенну неплохо разместить в коробе для защиты против непогоды.

Собираем фрактальную антенну для цифрового телевидения

Дочитав до конца обзор, фрактальные антенны сделает любой. Так быстро углубились в конструирование, что забыли рассказать о поляризации. Полагаем, она линейная и горизонтальная. Это проистекает из соображений:

  • Видео, очевидно, американского происхождения, разговор идет о HDTV. Следовательно, можем принимать моду указанной страны.
  • Как известно, на планете немногие государства вещают со спутников с использованием круговой поляризации, среди них РФ и США. Следовательно, полагаем, прочие технологии передачи информации схожи. Почему? Была Холодная война, полагаем, обе страны выбирали стратегически что и как передавать, прочие страны исходили из чисто практических соображений. Круговая поляризация внедрена специально для спутников шпионов (перемещающихся постоянно относительно наблюдателя). Отсюда основания полагать, что в телевидении и в радиовещании наблюдается сходство.
  • Структура антенны говорит, что линейная. Здесь просто неоткуда взяться круговой либо эллиптической поляризации. Следовательно – если только среди наших читателей нет профессионалов, владеющих MMANA – если антенна не ловит в принятом положении, поверните на 90 градусов в плоскости излучателя. Поляризация изменится на вертикальную. Кстати, многие смогут поймать и FM, если размеры задают побольше раза в 4. Лучше провод взять потолще (к примеру, 10 мм).

Надеемся, объяснили читателям, как пользоваться фрактальной антенной. Пара советов по простой сборке. Итак, постарайтесь найти проволоку с лакированной защитой. Согните фигуры, как показано на рисунке. Потом конструкторы расходятся, рекомендуем делать так:

  1. Зачистите звезды и провода фидера в местах стыковки. Провода фидера за ушки укрепите болтами на подложке в серединных частях. Чтобы выполнить действие правильно, заранее отмерьте дюйм и проведите две параллельные линии карандашом. Вдоль них должны лечь проволоки.
  2. Паяйте единую конструкцию, тщательно выверяя расстояния. Авторы видео рекомендуют делать излучатель, чтобы звезды углами ровно лежали на фидеры, а противоположными концами опирались на край подложки (каждая в двух местах). Для примерной звезды пометили места синим цветом.
  3. Чтобы выполнить условие, каждую звезду притяните в одном месте болтом с диэлектрическим хомутком (к примеру, из кембрика провода ПВС и подобное). На рисунке места креплений показаны красным для одной звезды. Болт схематически прорисован окружностью.

Питающий кабель проходит (необязательно) с обратной стороны. Сверлите дыры по месту. Настройка КСВ ведется изменением расстояния между проводами фидера, но в данной конструкции это садистский метод. Рекомендуем просто измерить волновое сопротивление антенны. Напомним, как это делается. Понадобится генератор на частоту просматриваемой программы, к примеру, 500 МГц, дополнительно – высокочастотный вольтметр, который не спасует перед сигналом.

Потом измеряется напряжение, выдаваемое генератором, для чего он замыкается на вольтметр (параллельно). Из переменного сопротивления с предельно меньшей собственной индуктивностью и антенны собираем резистивный делитель (подключаем последовательно вслед за генератором, сперва сопротивление, потом антенну). Вольтметром измеряем напряжение переменного резистора, одновременно регулируя номинал, пока показания генератора без нагрузки (см. пунктом выше) не станут вдвое превышать текущие. Значит, номинал переменного резистора стал равен волновому сопротивлению антенны на частоте 500 МГц.

Теперь возможно изготовить трансформатор нужным образом. В сети сложно найти нужное, для любителей ловить радиовещание нашли готовый ответ http://www.cqham.ru/tr.htm. На сайте написано и нарисовано, как согласовать нагрузку с 50-Омным кабелем. Обратите внимание, частоты соответствуют КВ диапазону, СВ умещается сюда частично. Волновое сопротивление антенны поддерживается в диапазоне 50 – 200 Ом. Сколько даст звезда, сказать сложно. Если найдется в хозяйстве прибор для измерения волнового сопротивления линии, напомним: если длина фидера кратна четверти длины волны, сопротивление антенны передается на выход без изменений. Для небольшого и большого диапазона подобные условия обеспечить невозможно (напомним, что в особенности фрактальных антенн входит и расширенный диапазон), но для целей измерений упомянутый факт используется повсеместно.

Теперь читатели знают все об этих удивительных приемопередающих устройствах. Столь необычная форма подсказывает, что разнообразие Вселенной не укладывается в типичные рамки.

Кто не знает что это такое и где используется, то могу сказать, что посмотрите видео фильмы про фракталы. А используются такие антенны в наше время повсеместно, к примеру, в каждом сотовом телефоне.

Итак, в конце 2013 года к нам зашли в гости тесть с тёщей, то да сё и тут тёща в преддверии праздника Нового года попросила у нас антенну для своего небольшого телевизора. Тесть смотрит телевизор через спутниковую тарелку и обычно что-то своё, а тёще захотело посмотреть новогодние программы спокойно не дёргая тестя.

Ок, отдали мы ей нашу рамочную антенну (квадрат 330х330 мм), через которую иногда смотрела телек жена.

А тут приближалось время открытия Зимней Олимпиады в Сочи и жена говорит: Сделай антенну.

Мне сделать очередную антенну проблем не составляет, только была бы цель и смысл. Пообещал сделать. И вот пришло время... но мне подумалось, что лепить очередную рамочную антенну как-то скучновато, всё же 21 век на дворе и тут я вспомнил, что самое прогрессивное в построении антенн - это ЕН-антенны, HZ-антенны и фрактальные-антенны. Прикинув, что более всего подходит к моему делу - остановился на фрактальной антенне. Благо про фракталы я фильмов всяких насмотрелся и фоток всяких с Интернета надёргал ещё давно. Вот и захотелось идею воплотить в материальную реальность.

Одно дело фотки, другое - конкретная реализация некоего устройства. Заморачиваться долго не стал и решил построить антенну по прямоугольному фракталу.

Достал медную проволоку где-то диаметром 1 мм, взял плоскогубцы и стал мастерить... первый проект был полномасштабный с использованием многих фракталов. Делал, с непривычки, долго, холодными зимними вечерами в итоге сделал, приклеил всю фрактальную поверхность к ДВП с помощью жидкого полиэтелена, подпаял напрямую кабель, около 1 м длины, стал пробовать... Опа! А эта антенна принимала телеканалы гораздо чётче чем рамочная... порадовал меня такой результат, значит не зря корячился и натирал мозоли, пока гнул проволоку в фрактальную форму.

Прошла где-то неделя и возникла у меня идея, что по размерам новая антенна практически как и рамочная, особой выгоды нет, если не учитывать небольшое улучшение в приёме. И вот решил смонтировать новую фрактальную антенну, используя меньше фракталов, соответственно и по габаритам меньше.

Фрактальная антенна. Первый вариант

В субботу 08.02.2014 г. достал небольшой кусок медной проволоки, что осталась от первой фрактальной антенны и довольно быстро, около полу часа, смонтировал новую антенну...


Фрактальная антенна. Второй вариант

Потом подпаял кабель от первой и получилось уже законченное устройство. Фрактальная антенна. Второй вариант с кабелем

Приступил к проверке работоспособности... Ух ты блин! Да эта ещё лучше работает и принимает в цвете аж 10 каналов, чего раньше нельзя было достигнуть с помощью рамочной антенны. Выигрыш существенный! Если ещё обратить внимание, что условия приёма у меня совсем неважнецкие: второй этаж, наш дом полностью перекрыт от телецентра многоэтажками, никакой прямой видимости, то выигрыш впечатляет как по приёму, так и по размерам.

В Интернете есть фрактальные антенны выполненные травлением на фольгированном стеклотекстолите... думаю без разницы на чём делать, да и размеры слишком сильно не стоит точно соблюдать для телевизионной антенны, в пределах работы на коленке .

Ответы на вопросы из форума, гостевой и почты.

Мир не без добрых людей:-)
Валерий UR3CAH: "Добрый день, Егор. Я думаю данная статья (а именно раздел "Фрактальные антенны: лучше меньше, да лучше") соответствует тематики Вашего сайта и будет Вам интересна:) А правда ли это? 73!"
Да, конечно интересна. Мы в какой-то степени уже касались этой темы при обсуждении геометрии гексабимов . Там тоже была дилема с "уложением" электрической длины в геометрические размеры:-). Так что спасибо, Валерий, большое за присланный материал.
"Фрактальные антенны: лучше меньше, да лучше
За последние полвека жизнь стремительно стала меняться. Большинство из нас принимает достижения современных технологий как должное. Ко всему, что делает жизнь более комфортной, привыкаешь очень быстро. Редко кто задается вопросами «Откуда это взялось?» и «Как оно работает?». Микроволновая печь разогревает завтрак - ну и прекрасно, смартфон дает возможность поговорить с другим человеком - отлично. Это кажется нам очевидной возможностью.
Но жизнь могла бы быть совершенно иной, если бы человек не искал объяснения происходящим событиям. Взять, например, сотовые телефоны. Помните выдвижные антенны на первых моделях? Они мешали, увеличивали размеры устройства, в конце концов, часто ломались. Полагаем, они навсегда канули в Лету, и отчасти виной тому… фракталы.

Фрактальные рисунки завораживают своими узорами. Они определенно напоминают изображения космических объектов - туманностей, скопления галактик и так далее. Поэтому вполне закономерно, что, когда Мандельброт озвучил свою теорию фракталов, его исследования вызвали повышенный интерес у тех, кто занимался изучением астрономии. Один из таких любителей по имени Натан Коэн (Nathan Cohen) после посещения лекции Бенуа Мандельброта в Будапеште загорелся идеей практического применения полученных знаний. Правда, сделал он это интуитивно, и не последнюю роль в его открытии сыграл случай. Будучи радиолюбителем, Натан стремился создать антенну, обладающую как можно более высокой чувствительностью.
Единственный способ улучшить параметры антенны, который был известен на то время, заключался в увеличении ее геометрических размеров. Однако владелец жилья в центре Бостона, которое арендовал Натан, был категорически против установки больших устройств на крыше. Тогда Натан стал экспериментировать с различными формами антенн, стараясь получить максимальный результат при минимальных размерах. Загоревшись идеей фрактальных форм, Коэн, что называется, наобум сделал из проволоки один из самых известных фракталов - «снежинку Коха». Шведский математик Хельге фон Кох (Helge von Koch) придумал эту кривую еще в 1904 году. Она получается путем деления отрезка на три части и замещения среднего сегмента равносторонним треугольником без стороны, совпадающей с этим сегментом. Определение немного сложное для восприятия, но на рисунке все ясно и просто.
Существуют также другие разновидности «кривой Коха», но примерная форма кривой остается похожей.
Когда Натан подключил антенну к радиоприемному устройству, он был очень удивлен - чувствительность резко увеличилась. После серии экспериментов будущий профессор Бостонского университета понял, что антенна, сделанная по фрактальному рисунку, имеет высокий КПД и покрывает гораздо более широкий частотный диапазон по сравнению с классическими решениями. Кроме того, форма антенны в виде кривой фрактала позволяет существенно уменьшить геометрические размеры. Натан Коэн даже вывел теорему, доказывающую, что для создания широкополосной антенны достаточно придать ей форму самоподобной фрактальной кривой.
Автор запатентовал свое открытие и основал фирму по разработке и проектированию фрактальных антенн Fractal Antenna Systems, справедливо полагая, что в будущем благодаря его открытию сотовые телефоны смогут избавиться от громоздких антенн и станут более компактными. В принципе, так и произошло. Правда, и по сей день Натан ведет судебную тяжбу с крупными корпорациями, которые незаконно используют его открытие для производства компактных устройств связи. Некоторые известные производители мобильных устройств, как, например, Motorola, уже пришли к мирному соглашению с изобретателем фрактальной антенны."

При кажущейся "нереальной и фантастической" ситуация с приростом полезного сигнала абсолютно реальна и прагматична. Не надо быть семи пядей во лбу чтобы догадатся откуда появляются лишние микровольты. При очень большом увеличении электрической длинны антенны все её ломанные участки располагаются в пространстве синфазно предыдущим. А мы уже знаем откуда берётся усиление в многоэлементных антеннах: за счёт сложения в одном элементе энергии переизлучённой другими элементами. Понятно, что в качестве направленных их использовать по той же причине:-) нельзя, но факт остаётся фактом: фрактальная антенна реально эффективнее прямого провода.

  • Назад
  • Вперёд

You have no rights to post comments Недостаточно прав для комментирования

  • Duchifat: и правда 9 милливатт?

    С новой антенной заметно лучше стал принимать израильский Duchifat-1. Его всегда слышно слабо, но вот вроде со стэком из двух 7ми элемнтных антенн стало получше. Принял пару фреймов телеметрии. Скудновато, боюсь это у меня декодер не верный. Или неточный "перевод" цифр пакета в параметры от DK3WN. В пакете мощность от дачтика (forward) - всего 7,2 милливатта. Но если он говорит правду, то 10 милливатт его мощности на Земле слышно отменно:-)

  • Как прекрасен этот мир, посмотри

    Только что посидел за одним столом со всем миром. Прохождение балует равенством микровольт со всех направлений. То же самоео чём я писал и вчера и позавчера. Кто ходит ко мне в гости давно, уже читал. И слушал. Ниже фонограмма трёх интересных QSO проведенных с интервалом минут по 5-7. Между ними были еще связи, но не такие выразительные, японцы, американцы.... Их уже DXами называть нельзя по причине их многочисленности:-)

    Так вот для неверующих три аудио одно за другим 9M2MSO, Малайзия, Пуэрто-Рико NP4JS и наконец очаровательная Сесиль из Венесуэлы YY1YLY. Я благодарен Всевышнему за то что мы такие разные, разноцветные, прикольные и интересные. Все связи как на подбор SSB. как будто специально для тоо, чтобы все могли послушать.... :-)

  • Успешный долгожитель

    Пролетал успешный DelfiC3 при его 125 милливаттах отменно слышно, декодируется с Java примочкой RASCAL отменно еще и посылает принятые строки на сайт команды поддержки. AUDIO - Картинка декодера ниже.

  • Пропал WEB приёмник?

    Только успели поговорить про Java машину, как фирма SUN подсунула нам очереднную свинью:-) Конечно всё для блага пользователя. Только они забыли, что надо оповестить об ужесточении требований безопасности миллионы пользователей WEB приёмников, которые в 90 процентах случаев работают через Java машину. И, кстати, не только их. Создатели WED приёмников (И, кстати, сам Windows тоже:-) пытаются обходиться без JAVA используя HTML5 и прочие извороты, но получается не всегда. Слишком длинная история их связывает: всё замыкается на особенности железа. Мой ноут, например, с помощью HTML5 может обеспечить управление приёмником, но не может получить звук:-) Прикидываете, приёмник всё показывает, но при этом молчит:-) Короче на сегодняшний день ввам поможет только Вадим, UT3RZ.

    "UT3RZ Вадим. Прилуки. http://cqpriluki.at.uaВ связи с обновлением Jawa 14 января 2014 г. до версии 7 Update 51 (build 1.7.0_51-b13) возникли проблемы с прослушиванием WEB SDR приемников.Создатели Jawa, преследуя цели безопасности пользователей компьютеров, в свою новую версию 7 Update 51 внесли необходимость подтверждения пользователем безопасности, вручную.

  • Проверьте уши своего TNC

    По причине скуки послушал (потыкал;-) канал диджипитера МКС. Шуршит вполне исправно и достаточно активно. Аудиоконтроль, конечно, всё записал. Жаба задавила прибивать запись. Вот кладу, проверьте настройки своих модемов или TNC. Красиво там, в Космосе. Правда действительно скучновато: одни и те же лица круглый год:-(

  • Телеграмма UR8RF

    Радіо Промінь

    Вітаю всіх. Сьогодні, 17 листопада, на Радіо Промінь на протязі 40 хвилин Володимир UY2UQ розповідав про аматорське радіо. Послухати можна на сайті Радіо Промінь в аудіоархіві від 17 листопада.
    Час 15:14:14 - 15:54:38 http://promin.fm/page/9.html?name=Audioarhiv1http://promin.fm/page/9.html?name=Audioarhiv1
    73! З повагою Олександр UR8RF

  • Интернет идёт к Морзе

    В декабре 2011г. компания Google объявила о выпуске приложения Gmail под iOS, которое позволяет быстро делать небольшие заметки. В пресс-релизе компании отмечалось, что такими записями пользовались еще пещерные люди, делая рисунки на скалах. И вот теперь софт для быстрых заметок получил свое логическое продолжение – Google объявила о принципиально новом способе набора текста на клавиатуре мобильных устройств.
    Gmail Tap – так называется приложение, с которым переход от привычной 26-кнопочной клавиатуры смартфонов на двухкнопочную станет реальностью. Вы не ослышались. Отныне пользователи устройств как на iOS, так и на Android смогут использовать Gmail Tap для набора текстовых сообщений при помощи лишь двух кнопок – точки и тире. Специалисты Google во главе с Ридом Морзе (пра-правнуком знаменитого изобретателя азбуки Морзе) предлагают пользователям упрощенную версию «Морзянки», с которой СМС-сообщения можно будет набирать не медленнее, чем со стандартной клавиатуры. Вызывает восхищение возможность набирать два сообщения одновременно. Режим для продвинутых пользователей «multi email mode» предполагает использование двух клавиатур – стандартной снизу и дополнительной в верхней части экрана. И даже начинающий пользователь Gmail Tap сможет быстро научиться набирать текст, практически не глядя на клавиатуру. Посмотрите, как это просто:

За последние полвека жизнь стремительно стала меняться. Большинство из нас принимает достижения современных технологий как должное. Ко всему, что делает жизнь более комфортной, привыкаешь очень быстро. Редко кто задается вопросами «Откуда это взялось?» и «Как оно работает?». Микроволновая печь разогревает завтрак - ну и прекрасно, смартфон дает возможность поговорить с другим человеком - отлично. Это кажется нам очевидной возможностью.

Но жизнь могла бы быть совершенно иной, если бы человек не искал объяснения происходящим событиям. Взять, например, сотовые телефоны. Помните выдвижные антенны на первых моделях? Они мешали, увеличивали размеры устройства, в конце концов, часто ломались. Полагаем, они навсегда канули в Лету, и отчасти виной тому… фракталы.

Фрактальные рисунки завораживают своими узорами. Они определенно напоминают изображения космических объектов - туманностей, скопления галактик и так далее. Поэтому вполне закономерно, что, когда Мандельброт озвучил свою теорию фракталов, его исследования вызвали повышенный интерес у тех, кто занимался изучением астрономии.

Один из таких любителей по имени Натан Коэн (Nathan Cohen) после посещения лекции Бенуа Мандельброта в Будапеште загорелся идеей практического применения полученных знаний. Правда, сделал он это интуитивно, и не последнюю роль в его открытии сыграл случай. Будучи радиолюбителем, Натан стремился создать антенну, обладающую как можно более высокой чувствительностью.
Единственный способ улучшить параметры антенны, который был известен на то время, заключался в увеличении ее геометрических размеров. Однако владелец жилья в центре Бостона, которое арендовал Натан, был категорически против установки больших устройств на крыше.

Тогда Натан стал экспериментировать с различными формами антенн, стараясь получить максимальный результат при минимальных размерах. Загоревшись идеей фрактальных форм, Коэн, что называется, наобум сделал из проволоки один из самых известных фракталов - «снежинку Коха».

Шведский математик Хельге фон Кох (Helge von Koch) придумал эту кривую еще в 1904 году. Она получается путем деления отрезка на три части и замещения среднего сегмента равносторонним треугольником без стороны, совпадающей с этим сегментом. Определение немного сложное для восприятия, но на рисунке все ясно и просто.

Существуют также другие разновидности «кривой Коха», но примерная форма кривой остается похожей.
Когда Натан подключил антенну к радиоприемному устройству, он был очень удивлен - чувствительность резко увеличилась. После серии экспериментов будущий профессор Бостонского университета понял, что антенна, сделанная по фрактальному рисунку, имеет высокий КПД и покрывает гораздо более широкий частотный диапазон по сравнению с классическими решениями. Кроме того, форма антенны в виде кривой фрактала позволяет существенно уменьшить геометрические размеры.

Натан Коэн даже вывел теорему, доказывающую, что для создания широкополосной антенны достаточно придать ей форму самоподобной фрактальной кривой. Автор запатентовал свое открытие и основал фирму по разработке и проектированию фрактальных антенн Fractal Antenna Systems , справедливо полагая, что в будущем благодаря его открытию сотовые телефоны смогут избавиться от громоздких антенн и станут более компактными.

В принципе, так и произошло. Правда, и по сей день Натан ведет судебную тяжбу с крупными корпорациями, которые незаконно используют его открытие для производства компактных устройств связи. Некоторые известные производители мобильных устройств, как, например, Motorola, уже пришли к мирному соглашению с изобретателем фрактальной антенны.

PS: Предвидя возникшие вопросы по этой теме, предполагаю не столь эффективную работу таких антенн. Физику и природу не обманешь. Всякое скручивание и уменьшение размеров антенн вызывает уменьшение её КПД. Такого рода антенны и системы из них возможно применять на достаточно высоких частотах и при желании их миниатюризации. Это уже находит своё применение в сотовых телефонах, резонаторах на микросхемах, печатных платах и так далее.
Высокой эффективности ждать здесь не приходится, но работать в стиснённых условиях они будут и уже работают.

Проволочные фрактальные антенны, исследованные в данной дипломной работе, изготавливались изгибанием проволоки по напечатанному на принтере бумажному шаблону. Поскольку проволока изгибалась вручную при помощи пинцета, то точность изготовления «изгибов» антенны составляла около 0,5 мм. Поэтому для исследований брались наиболее простые геометрические фрактальные формы: кривая Коха и «биполярный скачок» Минковского .

Известно , что фракталы позволяют уменьшать размеры антенн, при этом размеры фрактальной антенны сравнивают с размерами симметричного полуволнового линейного диполя. В дальнейших исследованиях в дипломной работе проволочные фрактальные антенны будут сравниваться с линейным диполем с /4-плечами равными 78 мм с резонансной частотой 900 МГц.

Проволочные фрактальные антенны на основе кривой Коха

В работе приводятся формулы для расчёта фрактальных антенн на основе кривой Коха (рисунок 24).

а) n = 0 б) n = 1 в) n = 2

Рисунок 24 - Кривая Коха различных итераций n

Размерность D обобщенного фрактала Коха вычисляется по формуле:

Если в формулу (35) подставить стандартный угол изгиба кривой Коха = 60, то получим D = 1,262.

Зависимость первой резонансной частоты диполя Коха f К от размерности фрактала D , номера итерации n и резонансной частоты прямолинейного диполя f D той же высоты, что и ломанная Коха (по крайним точкам) определяется формулой:

Для рисунка 24, б при n = 1 и D = 1,262 из формулы (36) получаем:

f K = f D 0,816, f K = 900 МГц 0,816 = 734 МГц. (37)

Для рисунка 24, в при n = 2 и D = 1,262 из формулы (36) получаем:

f K = f D 0,696, f K = 900 МГц 0,696 = 626 МГц. (38)

Формулы (37) и (38) позволяют решить и обратную задачу - если мы хотим, чтобы фрактальные антенны работали на частоте f K = 900 МГц, то прямолинейные диполи должны работать на следующих частотах:

для n = 1 f D = f K / 0,816 = 900 МГц / 0,816 = 1102 МГц, (39)

для n = 2 f D = f K / 0,696 = 900 МГц / 0,696 = 1293 МГц. (40)

По графику на рисунке 22 определяем длины /4-плеч прямолинейного диполя. Они будут равны 63,5 мм (для 1102 МГц) и 55 мм (для 1293 МГц).

Таким образом, были изготовлены 4 фрактальных антенны на основе кривой Коха: две - с размерами /4-плеч по 78 мм, а две с меньшими размерами. На рисунках 25-28 показаны изображения экрана РК2-47, по которым можно экспериментально определить резонансные частоты.

В таблицу 2 сведены расчетные и экспериментальные данные, из которых видно, что теоретические частоты f Т отличаются от экспериментальных f Э не более 4-9%, а это вполне хороший результат.

Рисунок 25 - Экран РК2-47 при измерении антенны с кривой Коха итерации n = 1 с /4-плечами равными 78 мм. Резонансная частота 767 МГц

Рисунок 26 - Экран РК2-47 при измерении антенны с кривой Коха итерации n = 1 с /4-плечами равными 63,5 мм. Резонансная частота 945 МГц

Рисунок 27 - Экран РК2-47 при измерении антенны с кривой Коха итерации n = 2 с /4-плечами равными 78 мм. Резонансная частота 658 МГц

Рисунок 28 - Экран РК2-47 при измерении антенны с кривой Коха итерации n = 2 с /4-плечами равными 55 мм. Резонансная частота 980 МГц

Таблица 2 - Сравнение расчетных (теоретических fТ) и экспериментальных fЭ резонансных частот фрактальных антенн на основе кривой Коха

Проволочные фрактальные антенны на основе «биполярного скачка». Диаграмма направленности

Фрактальные линии типа «биполярный скачок» описаны в работе , однако формул для расчетов резонансной частоты в зависимости от размеров антенны в работе не приводится. Поэтому было решено определить резонансные частоты экспериментально. Для простых фрактальных линий 1-й итерации (рисунок 29, б) было изготовлено 4 антенны - с длиной /4-плеча равным 78 мм, с вдвое меньшей длиной и двумя промежуточными длинами. Для сложных в изготовлении фрактальных линий 2-й итерации (рисунок 29, в) было изготовлено 2 антенны с длинами /4-плеч 78 и 39 мм.

На рисунке 30 показаны все изготовленные фрактальные антенны. На рисунке 31 показан внешний вид экспериментальной установки с фрактальной антенной «биполярный скачок» 2-й итерации. На рисунках 32-37 показано экспериментальное определение резонансных частот.

а) n = 0 б) n = 1 в) n = 2

Рисунок 29 - Кривая Минковского «биполярный скачок» различных итераций n

Рисунок 30 - Внешний вид всех изготовленных проволочных фрактальных антенн (диаметры проводов 1 и 0,7 мм)

Рисунок 31 - Экспериментальная установка: панорамный измеритель КСВН и ослабления РК2-47 с фрактальной антенной типа «биполярный скачок» 2-й итерации

Рисунок 32 - Экран РК2-47 при измерении антенны «биполярный скачок» итерации n = 1 с /4-плечами равными 78 мм.

Резонансная частота 553 МГц

Рисунок 33 - Экран РК2-47 при измерении антенны «биполярный скачок» итерации n = 1 с /4-плечами равными 58,5 мм.

Резонансная частота 722 МГц

Рисунок 34 - Экран РК2-47 при измерении антенны «биполярный скачок» итерации n = 1 с /4-плечами равными 48 мм. Резонансная частота 1012 МГц

Рисунок 35 - Экран РК2-47 при измерении антенны «биполярный скачок» итерации n = 1 с /4-плечами равными 39 мм. Резонансная частота 1200 МГц

Рисунок 36 - Экран РК2-47 при измерении антенны «биполярный скачок» итерации n = 2 с /4-плечами равными 78 мм.

Первая резонансная частота 445 МГц, вторая - 1143 МГц

Рисунок 37 - Экран РК2-47 при измерении антенны «биполярный скачок» итерации n = 2 с /4-плечами равными 39 мм.

Резонансная частота 954 МГц

Как показали проведённые экспериментальные исследования, если взять симметричный полуволновый линейный диполь и фрактальную антенну одинаковых длин (рисунок 38), то фрактальные антенны типа «биполярного скачка» будут работать на более низкой частоте (на 50 и 61%), а фрактальные антенны в виде кривой Коха работают на частотах ниже на 73 и 85%, чем у линейного диполя. Следовательно, действительно, фрактальные антенны можно делать меньших размеров. На рисунке 39 показаны размеры фрактальных антенн для одних и тех же резонансных частот (900-1000 МГц) в сравнении с плечом обычного полуволнового диполя.

Рисунок 38 - «Обычная» и фрактальная антенны одинаковой длины

Рисунок 39 - Размеры антенн для одних и тех же резонансных частот

5. Измерение диаграмм направленности фрактальных антенн

Диаграммы направленности антенн обычно измеряются в «безэховых» камерах, стенки которых поглощают падающее на них излучение. В данной дипломной работе измерения проводились в обычной лаборатории физико-технического факультета, и отраженный сигнал от металлических корпусов приборов и железных стендов вносил некоторую погрешность в измерения.

В качестве источника СВЧ сигнала использовался собственный генератор панорамного измерителя КСВН и ослабления РК2-47. В качестве приёмника излучения фрактальной антенны использовался измеритель уровня электромагнитного поля АТТ-2592, позволяющий проводить измерения в диапазоне частот от 50 МГц до 3,5 ГГц.

Предварительные измерения показали, что существенно искажает диаграмму направленности симметричного полуволнового линейного диполя излучение с внешней стороны коаксиального кабеля, который был напрямую (без согласующих устройств) подключён к диполю. Одним из способов подавления излучения линии передачи, является применение монополя вместо диполя совместно с четырьмя взаимно перпендикулярными /4 «противовесами», играющими роль «земли» (рисунок 40).

Рисунок 40 - /4 монополь и фрактальная антенна с «противовесами»

На рисунках 41 - 45 показаны экспериментально измеренные диаграммы направленности исследуемых антенн с «противовесами» (резонансная частота излучения при переходе от диполя к монополю практически не изменяется). Измерения плотности потока мощности СВЧ излучения в микроваттах на квадратный метр проводились в горизонтальной и вертикальной плоскостях через 10. Измерения проводились в «дальней» зоне антенны на расстоянии 2.

Первой исследовалась антенна в виде прямолинейного /4-вибратора. Из диаграммы направленности этой антенны видно (рисунок 41), что она отличается от теоретической. Это объясняется погрешностями измерений.

Погрешности измерений для всех исследуемых антенн могут быть следующие:

Отражением излучения от металлических предметов внутри лаборатории;

Отсутствием строгой взаимной перпендикулярности между антенной и противовесами;

Не полным подавлением излучения внешней оболочки коаксиального кабеля;

Неточностью отсчета угловых величин;

Неточным «нацеливанием» измерителя АТТ-2592 на антенну;

Помехами от сотовых телефонов.

Понравилось? Лайкни нас на Facebook