Компьютерные и телекоммуникационные сети. Компьютерные сети, сетевые и телекоммуникационные технологии

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-1.jpg" alt="> Компьютерные сети и телекоммуникации Лекция 7 ">

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-2.jpg" alt="> Цель обучения основам компьютерных сетей"> Цель обучения основам компьютерных сетей и телекоммуникаций - обеспечить знание теоретических и практических основ в организации и функционировании компьютерных сетей и телекоммуникаций, умение применять в профессиональной деятельности распределенные данные, прикладные программы и ресурсы сетей.

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-3.jpg" alt="> Задачи q знакомство с основными тенденциями развития методов и"> Задачи q знакомство с основными тенденциями развития методов и технологий компьютерных сетей; q знакомство с механизмами передачи данных по каналам связи; q знакомство с возможными ресурсами ЛВС; q знакомство с сервисом сети Іnternet.

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-4.jpg" alt="> Компьютерная сеть Это совокупность компьютеров и телекоммуникационного "> Компьютерная сеть Это совокупность компьютеров и телекоммуникационного оборудования, обеспечивающая информационный обмен компьютеров в сети. Основное назначение компьютерных сетей - обеспечение доступа к распределенным ресурсам.

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-5.jpg" alt="> Телекоммуникации (греч. tele - вдаль, далеко и лат. communicatio - общение) -"> Телекоммуникации (греч. tele - вдаль, далеко и лат. communicatio - общение) - это передача и прием любой информации (звука, изображения, данных, текста) на расстояние по различным электромагнитным системам.

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-6.jpg" alt="> Телекоммуникационная сеть это система технических средств, посредством которой"> Телекоммуникационная сеть это система технических средств, посредством которой осуществляются телекоммуникации.

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-7.jpg" alt="> К телекоммуникационным сетям относятся: Радиосети Телевизионн "> К телекоммуникационным сетям относятся: Радиосети Телевизионн Телефонные (передача ые сети Компьютер (передача сети голосовой ные сети голоса и (передача информаци (для изображения голосовой и - - передачи информаци широковещ данных). широковещат и). ательные услуги).

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-8.jpg" alt=">Классификация компьютерных сетей Компьютерные сети По территориальной распространённости"> Классификация компьютерных сетей Компьютерные сети По территориальной распространённости По типу функционального взаимодействия По типу сетевой топологии По типу среды передачи По скорости передачи данных По используемым сетевым моделям

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-9.jpg" alt=">По территориальной распространённости Нательная Глобальная Персональная"> По территориальной распространённости Нательная Глобальная Персональная Компьютерные сети Городская Локальная Кампусная

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-10.jpg" alt=">Нательная компьютерная сеть BAN (англ. Body Area Network) - беспроводная сеть надеваемых"> Нательная компьютерная сеть BAN (англ. Body Area Network) - беспроводная сеть надеваемых компьютерных устройств. BAN устройства могут быть встроены в тело, имплантированы, прикреплены к поверхности тела в фиксированном положении или совмещены с устройствами, которые люди носят в различных местах (карманах, на руке или в сумках).

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-11.jpg" alt="> Персональная сеть PAN (англ. Personal Area Network) - это"> Персональная сеть PAN (англ. Personal Area Network) - это сеть, построенная «вокруг» человека. PAN представляет собой компьютерную сеть, которая используется для передачи данных между устройствами, такими как компьютеры, телефоны, планшеты и персональные карманные компьютеры (КПК).

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-12.jpg" alt="> Локальные сети LAN (англ. Local Area Network) "> Локальные сети LAN (англ. Local Area Network) обеспечивают наивысшую скорость обмена информацией между компьютерами. Типичная локальная сеть занимает пространство в одно 2 здание. Протяженность локальных сетей составляет около одного километра. Их основное назначение состоит в объединении пользователей (как правило, одно компании или организации) для совместной работы.

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-13.jpg" alt="> Кампусная сеть CAN (англ. Campus Area Network)"> Кампусная сеть CAN (англ. Campus Area Network) - это группа локальных сетей, развернутых на компактной территории (кампусе) какого-либо учреждения и обслуживающие одно это учреждение - университет, промышленное предприятие, порт, оптовый склад и т. д. При этом сетевое оборудование (коммутаторы, маршрутизаторы) и среда передачи (оптическое волокно, медный завод, Cat 5 кабели и др.) данных принадлежит арендатору или владельцу кампуса, предприятия, университета, правительства и так далее.

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-14.jpg" alt="> Городские сети MAN (англ. Metropolitan Area Network) позволяют"> Городские сети MAN (англ. Metropolitan Area Network) позволяют взаимодействовать на территориальных образованиях меньших размеров и работают на скоростях от средних до высоких. Они меньше замедляют передачу данных, чем глобальные, но не могут обеспечить высокоскоростное взаимодействие на больших расстояниях. Протяженность городских сетей находится в переделах от нескольких километров до десятков и сотен километров.

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-15.jpg" alt="> Глобальные сети WAN (англ. Wide Area Network) "> Глобальные сети WAN (англ. Wide Area Network) позволяют организовать взаимодействие между абонентами на больших расстояниях. Эти сети работают на относительно низких скоростях и могут вносить значительные задержки в передачу информации. Протяженность глобальных сетей может составлять тысячи километров. Поэтому они так или иначе интегрированы с сетями масштаба страны.

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-16.jpg" alt=">По типу функционального взаимодействия Компьютерные сети Одно"> По типу функционального взаимодействия Компьютерные сети Одно ранговая Клиент-сервер сеть

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-17.jpg" alt="> Клиент-сервер Это вычислительная или сетевая архитектура, в которой"> Клиент-сервер Это вычислительная или сетевая архитектура, в которой задания или сетевая нагрузка распределены между поставщиками услуг, называемыми серверами, и заказчиками услуг, называемыми клиентами. Фактически клиент и сервер - это программное обеспечение. Обычно эти программы расположены на разных вычислительных машинах и взаимодействуют между собой через вычислительную сеть посредством сетевых протоколов, но они могут быть расположены также и на одной машине.

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-18.jpg" alt="> Одноранговая сеть О дноранговая сетевая архитектура "> Одноранговая сеть О дноранговая сетевая архитектура - стабильно набирающий популярность способ организации высокоуровнего сетевого взаимодействия, где все узлы сети обладают равными правами и выступают поставщиками и потребителями сетевых сервисов одновременно.

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-19.jpg" alt="> По типу сетевой топологии Звезда Ячеистая Двойное "> По типу сетевой топологии Звезда Ячеистая Двойное Решетка кольцо Кольцо Дерево Компьюте Шина рные сети Fat Tree

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-20.jpg" alt="> По типу сетевой топологии Топология типа общая ши на, представляет собой"> По типу сетевой топологии Топология типа общая ши на, представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы, для предотвращения отражения сигнала. Кольцо - топология, в которой каждый компьютер соединён линиями связи только с двумя другими: от одного он только получает информацию, а другому только передаёт.

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-21.jpg" alt="> По типу сетевой топологии Решётка (Grid network , иногда"> По типу сетевой топологии Решётка (Grid network , иногда также mesh, например 3 D-mesh) - понятие из теории организации компьютерных сетей. Это топология, в которой узлы образуют регулярную многомерную решётку. Дерево - это топология сетей, в которой каждый узел более высокого уровня связан с узлами более низкого уровня звездообразной связью, образуя комбинацию звезд. Также дерево называют иерархической звездой.

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-22.jpg" alt="> По типу сетевой топологии Двойное кольцо - топология, построенная на"> По типу сетевой топологии Двойное кольцо - топология, построенная на двух кольцах. Первое кольцо - основной путь для передачи данных. Второе - резервный путь, дублирующий основной. Звезда - базовая топология компьютерной сети, в которой все компьютеры сети присоединены к центральному узлу (обычно коммутатор), образуя физический сегмент сети. Ячеистая топология - сетевая топология компьютерной сети, построенная на принципе ячеек, в которой рабочие станции сети соединяются друг с другом и способны принимать на себя роль коммутатора для остальных участников.

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-23.jpg" alt="> Сеть fat tree (утолщенное дерево) - топология компьютерной сети, "> Сеть fat tree (утолщенное дерево) - топология компьютерной сети, изобретённая Чарльзом Лейзерсоном из MIT, является дешевой и эффективной для суперкомпьютеров. В отличие от классической топологии дерево, в которой все связи между узлами одинаковы, связи в утолщенном дереве становятся более широкими (толстыми, производительными по пропускной способности) с каждым уровнем по мере приближения к корню дерева. Часто используют удвоение пропускной способности на каждом уровне.

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-24.jpg" alt="> По типу среды передачи Компьютерные сети Проводные сети"> По типу среды передачи Компьютерные сети Проводные сети Беспроводные сети

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-25.jpg" alt="> Проводные сети Беспроводные сети Основа всего: кабели. Во "> Проводные сети Беспроводные сети Основа всего: кабели. Во Это вычислительная сеть, всех сетевых стандартах основанная определены необходимые на беспроводном (без условия и характеристики использования кабельной проводки) принципе, используемого кабеля, полностью соответствующая такие как полоса стандартам для обычных пропускания, волновое проводных сетей. В качестве сопротивление носителя информации в (импеданс), удельное таких сетях могут выступать затухание сигнала, радиоволны СВЧ-диапазона. помехозащищенность и другие.

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-26.jpg" alt="> Виды кабелей Существуют два принципиально разных вида сетевых кабелей: "> Виды кабелей Существуют два принципиально разных вида сетевых кабелей: медные и оптоволоконные. Кабели на основе медных проводов, в свою очередь, делятся на коаксиальные и витая пара: Коаксиальный кабель представляет собой центральный проводник, окруженный слоем диэлектрика (изолятора) и экраном из металлической оплетки, выполняющим также роль второго контакта в кабеле. Витая пара представляет собой несколько (обычно 8) пар скрученных проводников. Скручивание применяется для уменьшения помех как самой пары, так и внешних, влияющих на нее. У скрученной определенным образом пары появляется такая характеристика, как волновое сопротивление.

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-27.jpg" alt="> Оптоволоконный кабель состоит из одного или нескольких волокон, заключенных в оболочки, "> Оптоволоконный кабель состоит из одного или нескольких волокон, заключенных в оболочки, и бывает двух типов: одномодовый и многомодовый. Их различие в том, как свет распространяется в волокне в одномодовом кабеле все лучи проходят одинаковое расстояние и достигают приемника одновременно, а в многомодовом сигнал может размазаться.

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-28.jpg" alt="> По скорости передачи данных Компьютерные сети"> По скорости передачи данных Компьютерные сети высокоскоростные низкоскоростные среднескоростные (свыше 100 (до 10 Мбит/с), (до 100 Мбит/с), Мбит/с);

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-29.jpg" alt=">По используемым сетевым моделям Компьютерные сети OSI "> По используемым сетевым моделям Компьютерные сети OSI TCP/IP

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-30.jpg" alt="> Сетевая модель Это модель взаимодействия сетевых протоколов. А"> Сетевая модель Это модель взаимодействия сетевых протоколов. А протоколы в свою очередь, это стандарты, которые определяют каким образом, будут обмениваться данными различные программы.

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-31.jpg" alt="> OSI Open System Interconnection - взаимодействие открытых систем,"> OSI Open System Interconnection - взаимодействие открытых систем, ВОС - это 7 -уровневая логическая модель работы сети. Модель OSI реализуется группой протоколов и правил связи, организованных в несколько уровней: 1. на физическом уровне определяются физические (механические, электрические, оптические) характеристики линий связи; 2. на канальном уровне определяются правила использования физического уровня узлами сети; 3. сетевой уровень отвечает за адресацию и доставку сообщений;

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-32.jpg" alt="> OSI 4. транспортный уровень контролирует очередность прохождения компонентов"> OSI 4. транспортный уровень контролирует очередность прохождения компонентов сообщения; 5. задача сеансового уровня - координация связи между двумя прикладными программами, работающими на разных рабочих станциях; 6. уровень представления служит для преобразования данных из внутреннего формата компьютера в формат передачи; 7. прикладной уровень является пограничным между прикладной программой и другими уровнями - обеспечивает удобный интерфейс связи сетевых программ пользователя.

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-33.jpg" alt="> TCP / IP Transmission Control Protocol /"> TCP / IP Transmission Control Protocol / Internet Protocol Основоположники: Robert Kahn, Vinton Cerf (1972 – 1974) Основан на использовании IP-адресов вида: a. b. c. d (четыре числа от 0 до 255) для любого хоста (компьютера) в сети и пакетов (packets) фиксированного размера, содержащих адрес получателя Используется в Интернете Более общее современное название: Internet Protocol Suite (различаются более новая версия – IPv 6 и более старая – IPv 4) Другой вариант: UDP/IP (UDP – асинхронный транспортный протокол, обеспечивающий обмен датаграммами – байтовыми массивами переменной длины); менее надежный, но более быстрый Скорость TCP/IP не всегда удовлетворительна. Для оптимизации связи между узлами сети применяются Distributed Hash Tables (DHT) – распределенные хеш-таблицы и Peer-to-Peer (P 2 P) Networks – одноранговые сети. В них реализована своя система имен узлов сети и более быстрого их поиска, чем с использованием TCP/IP протоколов 33

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-34.jpg" alt="> TCP / IP TCP/IP - содержит 4 уровня: канальный"> TCP / IP TCP/IP - содержит 4 уровня: канальный уровень (link layer), сетевой уровень (Internet layer), транспортный уровень (transport layer), прикладной уровень (application layer).

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-35.jpg" alt=">Уровни моделей ">

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-36.jpg" alt="> Стек протоколов - это иерархически организованный набор"> Стек протоколов - это иерархически организованный набор сетевых протоколов, достаточный для организации взаимодействия узлов в сети. Протоколы работают в сети одновременно, значит работа протоколов должна быть организована так, чтобы не возникало конфликтов или незавершённых операций. Поэтому стек протоколов разбивается на иерархически построенные уровни, каждый из которых выполняет конкретную задачу - подготовку, приём, передачу данных и последующие действия с ними.

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-37.jpg" alt="> Сетевой протокол Это набор правил и действий (очерёдности действий), позволяющий осуществлять"> Сетевой протокол Это набор правил и действий (очерёдности действий), позволяющий осуществлять соединение и обмен данными между двумя и более включёнными в сеть устройствами.

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-38.jpg" alt="> Протокол 1. HTTP (Hyper Text Transfer"> Протокол 1. HTTP (Hyper Text Transfer Protocol) - это протокол передачи гипертекста. Протокол HTTP используется при пересылке Web-страниц между компьютерами, подключенными к одной сети. 2. FTP (File Transfer Protocol) - это протокол передачи файлов со специального файлового сервера на компьютер пользователя. FTP дает возможность абоненту обмениваться двоичными и текстовыми файлами с любым компьютером сети. Установив связь с удаленным компьютером, пользователь может скопировать файл с удаленного компьютера на свой или скопировать файл со своего компьютера на удаленный.

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-39.jpg" alt="> Протокол 3. POP 3 (Post Office Protocol) - это"> Протокол 3. POP 3 (Post Office Protocol) - это стандартный протокол почтового соединения. Серверы POP обрабатывают входящую почту, а протокол POP предназначен для обработки запросов на получение почты от клиентских почтовых программ. 4. SMTP (Simple Mail Transfer Protocol) - протокол, который задает набор правил для передачи почты. Сервер SMTP возвращает либо подтверждение о приеме, либо сообщение об ошибке, либо запрашивает дополнительную информацию.

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-40.jpg" alt="> Протокол 5. TELNET - это протокол удаленного доступа. TELNET"> Протокол 5. TELNET - это протокол удаленного доступа. TELNET дает возможность абоненту работать на любой ЭВМ находящейся с ним в одной сети, как на своей собственной, то есть запускать программы, менять режим работы и так далее. На практике возможности ограничиваются тем уровнем доступа, который задан администратором удаленной машины. 6. DTN - протокол, предназначенный для сетей дальней космической связи IPN, которые используются NASA.

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-41.jpg" alt="> Протокол 7. DHCP (Dynamic Host Configuration"> Протокол 7. DHCP (Dynamic Host Configuration Protocol - протокол динамической настройки узла) - сетевой протокол, позволяющий компьютерам автоматически получать IP-адрес и другие параметры, необходимые для работы в сети TCP/IP. Данный протокол работает по модели «клиент-сервер» . 8. Internet Protocol (IP , досл. «межсетевой протокол») маршрутизируемый протокол сетевого уровня стека TCP/IP. Именно IP стал тем протоколом, который объединил отдельные компьютерные сети во всемирную сеть Интернет. Неотъемлемой частью протокола является адресация сети

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-42.jpg" alt="> IP – адрес и Маска сети У каждого компьютера"> IP – адрес и Маска сети У каждого компьютера в сети Интернет есть свой уникальный адрес - Uniform Resource Locator (URL). Цифровые адреса состоят из четырех целых десятичных чисел, разделённых точками, каждое из этих чисел находится в интервале 0… 255. Пример: 225. 224. 196. 10.

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-43.jpg" alt="> IP – адрес и Маска сети Максимальное количество IP"> IP – адрес и Маска сети Максимальное количество IP -адресов, которое может быть использовано в подсети определённого размера, называется subnet mask (маской подсети). В терминологии сетей TCP/IP маской подсети или маской сети называется битовая маска, определяющая, какая часть IP-адреса узла сети относится к адресу сети, а какая - к адресу самого узла в этой сети. Например, узел с IP-адресом 12. 34. 56. 78 и маской подсети 255. 0 находится в сети 12. 34. 56. 0/24

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-44.jpg" alt="> IP – адрес и Маска сети Адрес документа в Интернете"> IP – адрес и Маска сети Адрес документа в Интернете состоит из следующих частей: 1. протокол, чаще всего HTTP (для Web-страниц) или FTP (для файловых архивов) 2. знаки: //, отделяющие протокол от остальной части адреса 3. доменное имя (или IP-адрес) сайта 4. каталог на сервере, где находится файл 5. имя файла Пример адреса: http: //testedu. ru/test/istoriya/11 -klass/

Src="https://present5.com/presentation/3/156029098_452833218.pdf-img/156029098_452833218.pdf-45.jpg" alt=">Спасибо за внимание!!! ">

Компьютерные и телекоммуникационные сети

Компьютерная сеть (КС) – совокупность компьютеров и терминалов, соединœенных с помощью каналов связи в единую систему, удовлетворяющую требованиям распределœенной обработки данных .

В общем случае под телœекоммуникационной сетью (ТС) понимаютсистему, состоящую из объектов, осуществляющих функции генерации, преобразования, хранения и потребления продукта͵ называемых пунктами (узлами) сети, и линий передачи (связи, коммуникаций, соединœений), осуществляющих передачу продукта между пунктами .

Учитывая зависимость отвида продукта – информация, энергия, масса – различают соответственно информационные, энергетические и вещественные сети.

Информационная сеть (ИС) – коммуникационная сеть, в которой продуктом генерирования, переработки, хранения и использования информации является информация. Традиционно для передачи звуковой информации используются телœефонные сети, изображений – телœевидение, текста – телœеграф (телœетайп). Сегодня всœе большее распространение получают информационные сети интегрального обслуживания, позволяющие передавать в едином канале связи звук, изображение и данные.

Вычислительная сеть (ВС) – информационная сеть, в состав которой входит вычислительное оборудование. Компонентами вычислительной сети бывают ЭВМ и периферийные устройства, являющиеся источниками и приемниками данных, передаваемых по сети.

ВС классифицируют по ряду признаков.

1. Учитывая зависимость отрасстояния между узлами сети ВС можно разделить на три класса:

· локальные (ЛВС, LAN – Local Area Network) – охватывающие ограниченную территорию (обычно в пределах удаленности станций не более чем на несколько десятков или сотен метров друг от друга, реже на 1…2 км);

· корпоративные (масштаба предприятия) – совокупность связанных между собой ЛВС, охватывающих территорию, на которой размещено одно предприятие или учреждение в одном или несколько близко расположенных зданиях;

· территориальные – охватывающие значительное географическое пространство; среди территориальных сетей можно выделить сети региональные (MAN – Metropolitan Area Network) и глобальные (WAN – Wide Area Network), имеющие соответственно региональные или глобальные масштабы.

Особо выделяют глобальную сеть Интернет.

2. Важным признаком классификации вычислительных сетей является их топология, определяющая геометрическое расположение базовых ресурсов вычислительных сети и связей между ними.

Учитывая зависимость оттопологии соединœений узлов различают сети шинной (магистральной), кольцевой, звездной, иерархической, произвольной структуры.

Среди ЛВС наиболее распространены :

· шинная (bus) – локальная сеть, в которой связь между любыми двумя станциями устанавливается через один общий путь и данные, передаваемые любой станцией, одновременно становятся доступными для всœех других станций, подключенных к этой же среде передачи данных;

· кольцевая (ring) – узлы связаны кольцевой линией передачи данных (к каждому узлу подходят только две линии). Данные, проходя по кольцу, поочередно становятся доступными всœем узлам сети;

· звездная (star) – имеется центральный узел, от которого расходятся линии передачи данных к каждому из остальных узлов.

Топологическая структура сети оказывает значительное влияние на ее пропускную способность, устойчивость сети к отказам ее оборудования, на логические возможности и стоимость сети.

3. Учитывая зависимость отспособа управления различают сети:

· ʼʼклиент-серверʼʼ - в них выделяется один или несколько узлов (их название – серверы), выполняющих в сети управляющие или специальные обслуживающие функции, а остальные узлы (клиенты) являются терминальными, в них работают пользователи. Сети ʼʼклиент-серверʼʼ различаются по характеру распределœения функций между серверами, т. е. по типам серверов (к примеру, файл-серверы, серверы баз данных). При специализации серверов по определœенным приложениям имеем сеть распределœенных вычислений. Такие сети отличают также от централизованных систем, построенных на мэйнфреймах;

· одноранговые – в них всœе узлы равны. Поскольку в общем случае под клиентом принято понимать объект (устройство или программа), запрашивающий некоторые услуги, а под сервером – объект, предоставляющий эти услуги, то каждый узел в одноранговых сетях может выполнять функции и клиента͵ и сервера.

4. Учитывая зависимость оттого, одинаковые или неодинаковые ЭВМ применяют в сети, различают сети однотипных ЭВМ, называемые однородными, и разнотипных ЭВМ – неоднородные (гетерогенные). В крупных автоматизированных системах, как правило, сети оказываются неоднородными.

5. Учитывая зависимость отправ собственности на сети они бывают сетями общего пользования (public) или частными (privat).

Любая коммуникационная сеть должна включать следующие основные компоненты: передатчик, сообщение, средства передачи, приемник.

Передатчик – устройство, являющееся источником данных.

Приемник – устройство, принимающее данные.

Приемником бывают компьютер, терминал или какое-либо цифровое устройство.

Сообщение – цифровые данные определœенного формата͵ предназначенные для передачи.

Это должна быть файл базы данных, таблица, ответ на запрос, текст или изображение.

Средства передачи – физическая передающая среда и специальная аппаратура, обеспечивающая передачу сообщений.

Для передачи сообщений в вычислительных сетях используются различные типы каналов связи. Наиболее распространены выделœенные телœефонные каналы и специальные каналы для передачи цифровой информации. Применяются также радиоканалы и каналы спутниковой связи.

Каналом связи называют физическую среду и аппаратурные средства, осуществляющие передачу информации между узлами коммутации .

Потребности формирования единого мирового пространства привели к созданию глобальной сети Интернет. Сегодня Интернет привлекает пользователœей своими информационными ресурсами и сервисами (услугами), которыми пользуется около миллиарда человек во всœех странах мира. К сетевым услугам относятся электронные доски объявлений (Bulletin Board System – BBS), электронная почта (e-mail), телœеконференции или группы новостей (News Group), обмен файлами между компьютерами (FTR), параллельные беседы в Интернете (Internet Relay Chat – IRC), поисковые системы ʼʼВсемирной паутиныʼʼ.

В каждой локальной или корпоративной сети обычно имеется, по крайней мере, один компьютер, который имеет постоянное подключение к Интернету с помощью линии связи с высокой пропускной способностью (сервер Интернета).

Интернет предоставляет человеку неисчерпаемые возможности поиска нужной информации различного характера.

Практически всœе программы содержат, помимо справочной системы, электронную и печатную документацию. Эта документация является источником полезной информации о программе, и пренебрегать ею не следует.

Знакомство с программой начинается с информационных экранов, сопровождающих ее установку. Пока идет установка, следует узнать как можно больше о назначении программы и о ее возможностях. Это помогает понять, что следует разыскивать в программе после ее установки.

Печатная документация прилагается к программам, купленным в магазинах. Обычно это достаточно обширные руководства объёмом до нескольких сот страниц. Именно объём такого руководства часто подавляет желание внимательно его прочитать. Действительно, нет смысла исследовать руководство, в случае если ответ на вопрос можно получить более простыми средствами. При этом в случае затруднений, руководство по программе - ϶ᴛᴏ один из наиболее удобных источников крайне важно й информации.

Во многих случаях дополнительная справочная информация по программе представляется в виде текстовых файлов, входящих в состав дистрибутивного комплекта. Исторически сложилось так, что эти файлы обычно имеют имя README, происходящее от английской фразы: ʼʼRead me (Прочти меня)ʼʼ.

Обычно файл README содержит информацию об установке программы, дополнения и уточнения к печатному руководству, а также любую другую информацию. Для условно-бесплатных программ и небольших служебных программ, распространяемых через Интернет, данный файл может содержать полную электронную версию руководства.

Программы, распространяемые через Интернет, могут включать и другие текстовые информационные файлы.

В тех случаях, когда никакие ʼʼобычныеʼʼ источники не позволяют получить нужные сведения о программе, можно обратиться к бездонной сокровищнице информации, которую представляет собой Интернет. Поиск информации в Интернете сопряжен с некоторыми сложностями, но зато в сети есть ответы на любые вопросы.

Все основные компании и авторы, производящие программы для компьютеров, представлены в Интернете. С помощью поисковой системы нетрудно найти Web-страницу, посвященную нужной программе или серии программ. Такая страница может содержать обзор или краткое описание, сведения о последней версии программы, ʼʼзаплаткиʼʼ, связанные с доработкой программы или исправлением ошибок, а также ссылки на другие Web-документы, посвященные этим же вопросам. Здесь же нередко можно найти бесплатные, условно-бесплатные, демонстрационные и пробные версии программ.

Сеть Интернет растет очень быстрыми темпами, и найти нужную информацию среди миллиардов Web-страниц и файлов становится всœе сложнее. Для поиска информации используются специальные поисковые серверы, которые содержат более или менее полную и постоянно обновляемую информацию о Web-страницах, файлах и других документах, хранящихся на десятках миллионов серверов Интернета.

Различные поисковые сервера могут использовать различные механизмы поиска, хранение и предоставление пользователю информации. Поисковые серверы Интернета можно разделить на 2 группы:

· поисковые системы общего назначения;

· специализированные поисковые системы.

Современные поисковые системы часто являются информационными порталами, которые предоставляют пользователям не только возможности поиска документов в Интернете, но и доступ к другим информационным ресурсам (новостям, информации о погоде, о валютном курсе, интерактивным географическим картам и так далее).

Поисковые системы общего назначения являются базами данных, содержащими тематически сгруппированную информацию об информационных ресурсах Всемирной паутины.

Такие поисковые системы позволяют находить Web-сайты или Web-страницы по ключевым словам в базе данных или путем поиска в иерархической системе каталогов.

Интерфейс таких поисковых систем общего назначения содержит список разделов каталога и поле поиска. В поле поиска пользователь может ввести ключевые слова для поиска документа͵ а в каталоге выбрать определœенный раздел, что сужает поле поиска и таким образом ускоряет поиск.

Заполнение баз данных осуществляется с помощью специальных программ-роботов, которые периодически ʼʼобходятʼʼ Web-серверы Интернета.

Программы-роботы читают всœе встречающиеся документы, выделяют в них ключевые слова и заносят в базу данных, содержащую URL – адреса документов.

Так как информация в Интернете постоянно меняется (создаются новые Web-сайты и страницы, удаляются старые, меняются их URL-адреса и так далее), поисковые работы не всœегда успевают отследить всœе эти изменения. Информация, хранящаяся в базе данных поисковой системы, может отличатся от реального состояния Интернета͵ и тогда пользователь в результате поиска может получить адрес уже не существующего или перемещенного документа.

В целях обеспечения большего соответствия между содержанием базы данных поисковой системы и реальным состоянием Интернета большинство поисковых систем разрешают автору нового или перемещенного Web-сайта самому внести информацию в базу данных, заполнив регистрационную анкету. В процессе заполнения анкеты разработчик сайта вноситURL-адрес сайта͵ его название, краткое описание содержания сайта͵ а также ключевые слова, по которым легче всœего будет найти сайт.

Сайты в базе данных регистрируются по количеству их посœещений в день, неделю или месяц. Посœещаемость сайтов определяется с помощью специальных счетчиков, которые бывают установлены на сайте. Счетчики фиксируют каждое посœещение сайта и передают информацию о количестве посœещений на сервер поисковой системы.

Поиск документа в базе данных поисковой системы осуществляется с помощью введения запросов в поле поиска. Простой запрос содержит одно или несколько ключевых слов, которые являются главными для этого документа. Можно также использовать сложные запросы, использующие логические операции, шаблоны и так далее.

Специализированные поисковые системы позволяют искать информацию в других информационных ʼʼслояхʼʼ Интернета: серверах файловых архивов, почтовых серверах и др.

Компьютерные и телекоммуникационные сети - понятие и виды. Классификация и особенности категории "Компьютерные и телекоммуникационные сети" 2017, 2018.

Компьютерная сеть (КС) - совокупность компьютеров и терминалов, соединенных с помощью каналов связи в единую систему, удовлетворяющую требованиям распределенной обработки данных .

В общем случае под телекоммуникационной сетью (ТС) понимают систему, состоящую из объектов, осуществляющих функции генерации, преобразования, хранения и потребления продукта, называемых пунктами (узлами) сети, и линий передачи (связи, коммуникаций, соединений), осуществляющих передачу продукта между пунктами .

В зависимости от вида продукта - информация, энергия, масса - различают соответственно информационные, энергетические и вещественные сети.

Информационная сеть (ИС) - коммуникационная сеть, в которой продуктом генерирования, переработки, хранения и использования информации является информация. Традиционно для передачи звуковой информации используются телефонные сети, изображений - телевидение, текста - телеграф (телетайп). В настоящее время все большее распространение получают информационные сети интегрального обслуживания, позволяющие передавать в едином канале связи звук, изображение и данные.

Вычислительная сеть (ВС) - информационная сеть, в состав которой входит вычислительное оборудование. Компонентами вычислительной сети могут быть ЭВМ и периферийные устройства, являющиеся источниками и приемниками данных, передаваемых по сети.

ВС классифицируют по ряду признаков.

  • 1. В зависимости от расстояния между узлами сети ВС можно разделить на три класса:
    • · локальные (ЛВС, LAN - Local Area Network) - охватывающие ограниченную территорию (обычно в пределах удаленности станций не более чем на несколько десятков или сотен метров друг от друга, реже на 1…2 км);
    • · корпоративные (масштаба предприятия) - совокупность связанных между собой ЛВС, охватывающих территорию, на которой размещено одно предприятие или учреждение в одном или несколько близко расположенных зданиях;
    • · территориальные - охватывающие значительное географическое пространство; среди территориальных сетей можно выделить сети региональные (MAN - Metropolitan Area Network) и глобальные (WAN - Wide Area Network), имеющие соответственно региональные или глобальные масштабы.

Особо выделяют глобальную сеть Интернет.

2. Важным признаком классификации вычислительных сетей является их топология, определяющая геометрическое расположение основных ресурсов вычислительных сети и связей между ними.

В зависимости от топологии соединений узлов различают сети шинной (магистральной), кольцевой, звездной, иерархической, произвольной структуры.

Среди ЛВС наиболее распространены :

  • · шинная (bus) - локальная сеть, в которой связь между любыми двумя станциями устанавливается через один общий путь и данные, передаваемые любой станцией, одновременно становятся доступными для всех других станций, подключенных к этой же среде передачи данных;
  • · кольцевая (ring) - узлы связаны кольцевой линией передачи данных (к каждому узлу подходят только две линии). Данные, проходя по кольцу, поочередно становятся доступными всем узлам сети;
  • · звездная (star) - имеется центральный узел, от которого расходятся линии передачи данных к каждому из остальных узлов.

Топологическая структура сети оказывает значительное влияние на ее пропускную способность, устойчивость сети к отказам ее оборудования, на логические возможности и стоимость сети.

1.Типы компьютерных сетей. Типы, осн компоненты лвс.

Типы компьютерных сетей:

Компьютерная сеть (вычислительная сеть, сеть передачи данных) - система связи между двумя или более компьютерами. Для передачи информации могут быть использованы различные физические явления, как правило - различные виды электрических сигналов или электромагнитного излучения.Типы компьютерных сетей: Персональная сеть (англ. Personal Network) - это сеть, построенная «вокруг» человека. Данные сети призваны объединять все персональные электронные устройства пользователя (телефоны, карманные персональные компьютеры, смартфоны, ноутбуки, гарнитуры и.т.п.). К стандартам таких сетей в настоящее время относят Bluetooth.ЛВС – служит для объединения компьютеров, расположенных на незначительном расстоянии друг от друга. Такая сеть обычно не выходит за пределы одного помещения.Городская вычислительная сеть (англ. MAN - Metropolitan Area Network) охватывает несколько зданий в пределах одного города либо город целиком.Корпоративная сеть – совокупность ЛВС, мощных ЭВМ и терминальных систем, использующих общую информационную магистраль для обмена.Национальная сеть – сеть объединяющая ЭВМ в пределах одного государства (National LambdaRail, GEANT)Глоб-я вычислит-я сеть – сеть передачи данных, рассчитанная на обслуж-е значит-х террит-й с использ-ем общедоступных коммуникац-ых линий.

Типы: По типу функционального взаимодействия: Одноранговая - наиболее простые и предназнач для небольших раб групп. С их помощью Польз-ли нескольких комп-ров могут использ-ть общие диски, принтеры и др. устройства, передавать друг другу сообщения и выполнять другие коллективные операции. Здесь любой комп-р может выполнять как роль сервера, так и клиента. Такая сеть дешева и проста в обслуж-ии, но не может обеспечивать защиту информации при больших размерах сети). Многоранговые(в них для хранения разделяемых данных и программ использования рес-сов совместного доступа использ-ся выделенные комп-ры – серверы. Такая сеть имеет хорошие возможности для расширения, высокая производительности и надежность, но требует постоянного квалифицированного обслуживания).По типу сетевой топологии: Шина, Звезда, Кольцо, Решётка. Смешанная топология.По сетевым ОС: Windows,UNIX, Смешанные.

Типы, основные компоненты ЛВС:

Раб станция – комп-р, предназнач для локальной сети. Сетевой адаптер – спец-я плата, кот позволяет взаимодей-ть комп-ру с другими устрой-ми данной сети. Он осущ-ет физич-ю связь м/у устройствами сети посредством сетевого кабеля.Сервер – некоторое обслуживающее устройство, кот в ЛВС выполняет роль управляющего центра и концентратора данных. Это комбинация аппаратных и программных средств, кот служит для управления сетевыми ресурсами общего доступа.

3. Топология сети. Сетевые стандарты (типы сетей) Среда передачи данных (сетевой кабель).

Сетевая тополо́гия (от греч. τόπος, место) - описание конфигурации сети, схема расположения и соединения сетевых устройств.

Сетевая топология может быть:

физической - описывает реальное расположение и связи между узлами сети.

логической - описывает хождение сигнала в рамках физической топологии.

Существует множество способов соединения сетевых устройств, из них можно выделить пять базовых топологий: шина, кольцо, звезда, ячеистая топология и решётка. Остальные способы являются комбинациями базовых. В общем случае такие топологии называются смешанными или гибридными, но некоторые из них имеют собственные названия, например «Дерево».

Кольцо́ - базовая топология компьютерной сети, в которой рабочие станции подключены последовательно друг к другу, образуя замкнутую сеть. В кольце не используется конкурентный метод посылки данных, компьютер в сети получает данные от соседа и перенаправляет их дальше, если они адресованы не ему. Для определения того, кому можно передавать данные обычно используют маркер. Данные ходят по кругу, только в одном направлении.

Достоинства: Простота установки; Практически полное отсутствие дополнительного оборудования; Возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети, поскольку использование маркера исключает возможность возникновения коллизий.

Недостатки: Выход из строя одной рабочей станции, и другие неполадки (обрыв кабеля), отражаются на работоспособности всей сети; Сложность конфигурирования и настройки; Сложность поиска неисправностей;

Ши́на , представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы, для предотвращения отражения сигнала.

Отправляемое рабочей станцией сообщение распространяется на все компьютеры сети. Каждая машина проверяет - кому адресовано сообщение и если ей, то обрабатывает его. Для того, чтобы исключить одновременную посылку данных, применяется либо «несущий» сигнал, либо один из компьютеров является главным и «даёт слово» остальным станциям. Достоинства Небольшое время установки сети; Дешевизна (требуется меньше кабеля и сетевых устройств); Простота настройки; Выход из строя рабочей станции не отражается на работе сети;

Недостатки Любые неполадки в сети, как обрыв кабеля, выход из строя терминатора полностью уничтожают работу всей сети; Сложная локализация неисправностей; С добавлением новых рабочих станций падает производительность сети.

Звезда́ - базовая топология компьютерной сети, в которой все компьютеры сети присоединены к центральному узлу (обычно сетевой концентратор), образуя физический сегмент сети. Подобный сегмент сети может функционировать как отдельно, так и в составе сложной сетевой топологии (как правило "дерево").

Рабочая станция, которой нужно послать данные, отсылает их на концентратор, а тот определяет адресата и отдаёт ему информацию. В определённый момент времени только одна машина в сети может пересылать данные, если на концентратор одновременно приходят два пакета, обе посылки оказываются не принятыми и отправителям нужно будет подождать случайный промежуток времени, чтобы возобновить передачу данных.

Достоинства: выход из строя одной рабочей станции не отражается на работе всей сети в целом; хорошая масштабируемость сети; лёгкий поиск неисправностей и обрывов в сети; высокая производительность сети (при условии правильного проектирования); гибкие возможности администрирования.

Недостатки выход из строя центрального концентратора обернётся неработоспособностью сети (или сегмента сети) в целом; для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий; конечное число рабочих станций в сети (или сегменте сети) ограничено количеством портов в центральном концентраторе.

Ячеистая топология (в англ. mesh) - соединяет каждую рабочую станцию сети со всеми другими рабочими станциями этой же сети. Топология относится к полносвязным, в отличие от других - неполносвязных.

Отправитель сообщения по очереди соединяется с узлами сети, пока не найдёт нужный, который примет у него пакеты данных.

Сравнение с другими топологиями

Достоинства надёжность, при обрыве кабеля у компьютера в сети остаётся достаточно путей соединения.

Недостатки большая стоимость установки; сложность настройки и эксплуатации;

В проводных сетях данная топология используется редко, поскольку из-за преизбыточного расхода кабеля становится слишком дорогой. Однако, в беспроводных технологиях сети на основе ячеистой технологии встречаются всё чаще, поскольку затраты на сетевой носитель не увеличиваются и на первый план выходит надёжность сети.

Решётка - понятие из теории организации компьютерных сетей. Это топология, в которой узлы образуют регулярную многомерную решетку. При этом каждое ребро решетки параллельно ее оси и соединяет два смежных узла вдоль этой оси. Одномерная «решётка» - это цепь, соединяющая два внешних узла (имеющие лишь одного соседа) через некоторое количество внутренних (у которых по два соседа - слева и справа). Соединив оба внешних узла, получается топология «кольцо». Двух- и трехмерные решетки используются в архитектуре суперкомпьютеров.

Достоинства: высокая надежность. Недостатки: сложность реализации.

В кач-ве физич-ой среды передачи сигналов м\у комп-мивыступает

Сетевой кабель .Коаксиальный – сост. из медной жилы, изоляции, ее окружающей, медной оплетки и внешней оболочки. Может иметь дополн-но слой фольги. Тонкий коакс кабель – гибкий, диаметром примерно 0,5 см, способен передавать сигналы на расстоянии до 185 м без заметного искажения. Способен передавать данные со скоростью 10 Мбит/с, позволяет реализовать топологию шина и кольцо. Толстый коакс кабель – диаметр примерно 1 см, медная жила толще, чем у тонкого. Передает сигналы на расстояние 500 м. К нему для подключения исп-ся спец устр-во – трансивер, кот снабжен спец коннектором.Витая пара – два перевитых вокруг друг друга изолированных медных провода. Скрутка проводов позволяет избавиться от электрических помех, наводимых соседними парами и др источниками.STP(экранированная витая пара) иUTP(неэкранированная витая пара) – позволяет передавать сигнал до 100 м. Сущ-ет 5 категорий UTP: 1) традиционный телефонный кабедь для передачи аналоговых сигналов 2) кабель из 4 витых пар, спос-ый передавать сигналы со скор 4Мбит/с 3) кабель из 4 витых пар, спос-ый передавать сигналы со скор 10Мбит/с 4) 16 Мбит/с 5) 100-1000 Мбит/с (Чем выше категория пары, тем короче шаги скрутки). Для подключения витой пары к сети используется коннектор RJ-45. Исполь-ся в топологии типа звезда.Оптоволоконный – данные перед-ся по оптическим волокнам в виде модулируемых световых импульсов. Явл-ся надежным и защищенным способом передачи, поскольку электрич сигналы при этом не передаются, след-но, оптоволоконный кабель нельзя вскрыть и перехватить данные. Оптоволоконные линии преднезнач для перемещ-я больших объемов данных на высоких скоростях. Сигнал в них практически не затихает и не искажается. Он состоит из тонкого стеклянного цилиндра, называемого жилой, покрытого слоем стекла (оболочки) с иным, чем у жилы коэффициентом искажения. Иногда оптоволокно изгот из пластика. Каждое оптоволокно передает сигналы т-ко в одном направлении, поэтому кабель состоит из 2 волокон с отдельными коннекторами (для передачи и для приема). Одномодовый имногомодовый – для связи на короткие расстояния, т.к. он проще в монтажной эксплуатации. Оптоволокно использ-ся для прокладки информац-ых магистралей, корпоративных сетей, для передачи данных на значит-ые расстояния. (2 километра в полнодуплексном режиме по многомодовому оптическому волокну и до 32 километров по одномодовому).

Wireless LAN (WLAN) - беспроводная локальная вычислительная сеть. Wi-Fi - один из вариантов Wireless LAN. Позволяет развернуть сеть без прокладки кабеля, может уменьшить стоимость развёртывания и расширения сети. Стандарты 802.11a/b/g скорости от 11 до 53 Мбит/сек. WiMAX - протокол широкополосной радиосвязи (Worldwide Interoperability for Microwave Access), разработанный консорциумом (англ. WiMAX Forum). . В отличие от сетей WiFi (IEEE 802.11x), где доступ к точке доступа клиентам предоставляется случайным образом, в WiMAX каждому клиенту отводится четко регламентированный промежуток времени. Кроме того, WiMAX поддерживает ячеистую топологию.

по дисциплине «Компьютерные сети и телекоммуникации»


ВВЕДЕНИЕ.. 65

2 КАБЕЛИ И ИНТЕРФЕЙСЫ... 10

3 ОБМЕН ДАННЫХ В СЕТИ.. 15

6 СЛУЖБЫ СЕТИ ИНТЕРНЕТ.. 40

8 СРЕДСТВА ПРОСМОТРА WEB.. 54

ВВЕДЕНИЕ.. 6

1 СЕТЕВЫЕ КОНЦЕПЦИИ И ТЕРМИНЫ... 7

1.1 Основные понятия. 7

1.2 Классификация сетей по масштабу. 7

1.3 Классификация сетей по наличию сервера. 7

1.3.1 Одноранговые сети. 7

1.3.2 Сети с выделенным сервером. 8

1.4 Выбор сети. 9

2 КАБЕЛИ И ИНТЕРФЕЙСЫ... 10

2.1 Типы кабелей. 10

2.1.1 Кабель типа «витая пара» – twisted pair 10

2.1.2 Коаксиальный кабель. 11

2.1.3 Оптоволоконный кабель. 12

2.2 Беспроводные технологии. 12

2.2.1 Радиосвязь. 13

2.2.2 Связь в микроволновом диапазоне. 13

2.2.3 Инфракрасная связь. 13

2.3 Параметры кабелей. 13

3 ОБМЕН ДАННЫХ В СЕТИ.. 15

3.1 Общие понятия. Протокол. Стек протоколов. 15

3.2 Модель ISO/OSI 16

3.3 Функции уровней модели ISO/OSI 18

3.4 Протоколы взаимодействия приложений и протоколы транспортной подсистемы. 21

3.5 Функциональное соответствие видов коммуникационного оборудования уровням модели OSI 22

3.6 Спецификация IEEE 802. 24

3.7 По стеку протоколов. 25

4 СЕТЕВОЕ ОБОРУДОВАНИЕ И ТОПОЛОГИИ.. 27

4.1 Сетевые компоненты. 27

4.1.1 Сетевые карты. 27

4.1.2 Повторители и усилители. 28

4.1.3 Концентраторы. 29

4.1.4 Мосты. 29

4.1.5 Маршрутизаторы. 30

4.1.6 Шлюзы. 30

4.2 Типы сетевой топологии. 31

4.2.1 Шина. 31

4.2.2 Кольцо. 32

4.2.3 Звезда. 32

4.2.5 Смешанные топологии. 33

5 ГЛОБАЛЬНАЯ СЕТЬ ИНТЕРНЕТ.. 36

5.1 Теоретические основы Интернета. 36

5.2 Работа со службами Интернета. 37

6 СЛУЖБЫ СЕТИ ИНТЕРНЕТ.. 40

6.1 Терминальный режим. 40

6.2 Электронная почта (E-Mail) 40

6.4 Служба телеконференций (Usenet) 41

6.5 Служба World Wide Web (WWW) 43

6.6 Служба имен доменов (DNS) 45

6.7 Служба передачи файлов (FTP) 48

6.8 Служба Internet Relay Chat 49

6.9 Служба ICQ.. 49

7 ПОДКЛЮЧЕНИЕ К СЕТИ ИНТЕРНЕТ.. 51

7.1 Основные понятия. 51

7.2 Установка модема. 52

7.3 Подключение к компьютеру поставщика услуг Интернета. 53

8 СРЕДСТВА ПРОСМОТРА WEB.. 54

8.1 Понятие броузеров и их функции. 54

8.2 Работа с программой Internet Explorer 54

8.2.1 Открытие и просмотр Web-страниц. 56



8.2.3 Приемы управления броузером. 57

8.2.4 Работа с несколькими окнами. 58

8.2.5 Настройка свойств броузера. 58

8.3 Поиск информации в World Wide Web. 60

8.4 Прием файлов из Интернета. 62

9 РАБОТА С ЭЛЕКТРОННЫМИ СООБЩЕНИЯМИ.. 64

9.1 Отправка и получение сообщений. 64

9.2 Работа с программой Outlook Express. 65

9.2.1 Создание учетной записи. 65

9.2.2 Создание сообщения электронной почты. 66

9.2.3 Подготовка ответов на сообщения. 66

9.2.4 Чтение сообщений телеконференций. 67

9.3 Работа с адресной книгой. 67


ВВЕДЕНИЕ

Рассматриваемый в данном конспекте лекций материал - не о конкретной операционной системе и даже не о конкретном типе операционных систем. В нем операционные системы (ОС) рассматриваются с самых общих позиций, а описываемые фундаментальные концепции и принципы построения справедливы для большинства ОС.


1 СЕТЕВЫЕ КОНЦЕПЦИИ И ТЕРМИНЫ

1.1 Основные понятия

Сеть – это соединение между двумя и более компьютерами, позволяющее им разделять ресурсы.

1.2 Классификация сетей по масштабу

Локальная сеть (Local Area Network) представляет собой набор соединенных в сеть компьютеров, расположенных в пределах небольшого физического региона, например, одного здания.

Это набор компьютеров и других подключенных устройств, которые укладываются в зону действия одной физической сети. Локальные сети представляют собой базовые блоки для построения объединенных и глобальных сетей.

Глобальные сети (Wide Area Network) могут соединять сети по всему миру; для межсетевых соединений обычно используются сторонние средства коммуникаций.

Соединения в глобальных сетях могут быть очень дорогими, так как стоимость связи растет с ростом ширины полосы пропускания. Таким образом, лишь небольшое число соединений в глобальных сетях поддерживают ту же полосу пропускания, что и обычные локальные сети.

Региональные сети (Metropolitan Area Network) используют технологии глобальных сетей для объединения локальных сетей в конкретном географическом регионе, например, городе.

1.3 Классификация сетей по наличию сервера

1.3.1 Одноранговые сети

Компьютеры в одноранговых сетях могут выступать как в роли клиентов, так и в роли серверов. Так как все компьютеры в этом типе сетей равноправны, то одноранговые сети не имеют централизованного управления разделением ресурсов. Любой из компьютеров в этой сети может разделять свои ресурсы с любым компьютером из этой же сети. Одноранговын взаимоотношения также означают, что ни один компьютер не имеет ни высшего приоритета на доступ, ни повышенной ответственности за предоставление ресурсов в совместное использование.

Преимущества одноранговых сетей:

– они легки в установке и настройке;

– отдельные машины не зависят от выделенного сервера;

– пользователи в состоянии контролировать свои собственные ресурсы;

– недорогой тип сетей в приобретении и эксплуатации;

– не нужно никакого дополнительного оборудования или программного обеспечения, кроме операционной системы;

– нет необходимости нанимать администратора сети;

– хорошо подходит с количеством пользователей, не превышающих 10.

Недостатки одноранговых сетей:

– применение сетевой безопасности одновременно только к одному ресурсу;

– пользователи должны помнить столько паролей, сколько имеется разделенных ресурсов;

– необходимо производить резервное копирование отдельно на каждом компьютере, чтобы защитить все совместные данные;

– при получении доступа к ресурса, на компьютере, на котором этот ресурс расположен, ощущается падение производительности;

– не существует централизованной организационной схемы для поиска и управления доступом к данным.

1.3.2 Сети с выделенным сервером

Компания Microsoft предпочитает термин Server-based. Сервер представляет собой машину (компьютер), чьей основной задачей является реакция на клиентские запросы. Серверы редко управляются кем-то непосредственно – только чтобы установить, настроить или обслуживать.

Достоинства сетей с выделенным сервером:

– они обеспечивают централизованное управление учетными записями пользователей, безопасностью и доступом, что упрощает сетевое администрирование;

– более мощное оборудование означает и более эффективный доступ к ресурсам сети;

– пользователям для входа в сеть нужно помнить только один пароль, что позволяет им получать доступ ко всем ресурсам, у которым имеет право;

– такие сети лучше масштабируются (растут) с ростом числа клиентов.

Недостатки сетей с выделенным сервером:

– неисправность сервера может сделать сеть неработоспособной, в лучшем случае – потеря сетевых ресурсов;

– такие сети требуют квалифицированного персонала для сопровождения сложного специализированного программного обеспечения;

– стоимость сети увеличивается, благодаря потребности в специализированном оборудовании и программном обеспечении.

1.4 Выбор сети

Выбор сети зависит от ряда обстоятельств:

– количество компьютеров в сети (до 10 – одноранговые сети);

– финансовые причины;

– наличие централизованного управления, безопасность;

– доступ к специализированным серверам;

– доступ к глобальной сети.


2 КАБЕЛИ И ИНТЕРФЕЙСЫ

На самом нижнем уровне сетевых коммуникаций находится носитель, по которому передаются данные. В отношении передачи данных термин media (носитель, среда передачи данных) может включать в себя как кабельные, так и беспроводные технологии.

2.1 Типы кабелей

Существует несколько различных видов кабелей, используемых в современных сетях. Различные сетевые ситуации могут потребовать различных типов кабелей.

2.1.1 Кабель типа «витая пара» – twisted pair

Представляет собой сетевой носитель, используемый во многих сетевых топологиях, включая Ethernet, ARCNet, IBM Token Ring.

Витая пара бывает двух видов.

1. Неэкранированная витая пара.

Имеется пять категорий неэкранированной витой пары. Они нумеруются по порядку возрастания качества от CAT1 до CAT5. Кабели более высокой категории обычно содержат больше пар проводников, и эти проводники имеют больше витков на единицу длины.

CAT1 – телефонный кабель, не поддерживает цифровой передачи данных.

CAT2 – представляет собой редко используемый старый тип неэкранированной витой пары. Он поддерживает скорость передачи данных до 4 Мбит/с.

CAT3 – минимальный уровень неэкранированной витой пары, требуемый для сегодняшних цифровых сетей, имеет пропускную способность 10 Мбит/с.

CAT4 – промежуточная спецификация кабеля, поддерживающая скорость передачи данных до 16 Мбит/с.

CAT5 – наиболее эффективный тип неэкранированной витой пары, поддерживающий скорость передачи данных до 100 Мбит/с.

Кабели неэкранированной витой пары соединяют сетевую карту каждого компьютера с сетевой панелью или с сетевым концентратором с помощью соединителя RJ-45 для каждой точки соединения.

Примером такой конфигурации является стандарт на сеть Ethernet 10Base-T, который характеризуется кабелем неэкранированная витая пара (от CAT3 до CAT5) и использованием соединителя RJ-45.

Недостатки:

– чувствительность к помехам со стороны внешних электромагнитных источников;

– взаимное наложение сигнала между смежными проводами;

– неэкранированная витая пара уязвима для перехвата сигнала;

– большое затухание сигнала по пути (ограничение до 100 м).

2. Экранированная витая пара.

Имеет схожую конструкцию, что и предыдущая, подчиняется тому же 100-метровому ограничению. Обычно содержит в середине четыре или более пары скрученных медных изолированных проводов, а также электрически заземленную плетеную медную сетку или алюминиевую фольгу, создавая экран от внешнего электромагнитного воздействия.

Недостатки:

– кабель менее гибок;

– требует электрического заземления.

2.1.2 Коаксиальный кабель

Этот тип кабеля состоит из центрального медного проводника, более толстого, чем провода в кабеле типа витая пара. Центральный проводник покрыт слоем пенистого пластикового изолирующего материала, который в свою очередь окружен вторым проводником, обычно плетеной медной сеткой или алюминиевой фольгой. Внешний проводник не используется для передачи данных, а выступает как заземление.

Коаксиальный кабель может передавать данные со скорость до 10 Мбит/с на максимальное расстояние от 185 м до 500 м.

Двумя основными типами коаксиального кабеля, используемого в локальных сетях, является «Толстый Ethernet» (Thicknet) и «Тонкий Ethernet» (Thinnet).

Также известен как кабель RG-58, является наиболее используемым. Он наиболее гибок из всех типов коаксиальных кабелей, имеет толщину примерно 6 мм. Он может использоваться для соединения каждого компьютера с другими компьютерами в локальной сети с помощью T–коннектора, British Naval Connector (BNC)-коннектора и 50-Омных заглушек (terminator терминаторов). Используется в основном для сетей типа 10Base-2 Ethernet.

Эта конфигурация поддерживает передачу данных со скорость до 10 Мбит/с на максимальное расстояние до 185 м между повторителями.

Является более толстым и более дорогим коаксиальным кабелем. По конструкции он схож с предыдущим, но менее гибок. Используется как основа для сетей 10Base-5 Ethernet. Этот кабель имеет маркировку RG-8 или RG-11, приблизительно 12 мм в диаметре. Он используется в виде линейной шины. Для подключения к каждой сетевой плате используется специальный внешний трансивер AUI (Attachment unit interface) и «вампир» (ответвление), пронизывающее оболочку кабеля для получения доступа к проводу.

Имеет толстый центральный проводник, который обеспечивает надежную передачу данных на расстояние до 500 м на сегмент кабеля. Часто используется для создания соединительных магистралей. Скорость передачи данных до 10 Мбит/с.

2.1.3 Оптоволоконный кабель

Обеспечивают превосходную скорость передачи информации на большие расстояния. Они не восприимчивы к электромагнитному шуму и подслушиванию.

Он состоит из центрального стеклянного или пластикового проводника, окруженного другим слоем стеклянного или пластикового покрытия, и внешней защитной оболочки. Данные передаются по кабелю с помощью лазерного или светодиодного передатчика, который посылает однонаправленные световые импульсы через центральное стеклянное волокно. Стеклянное покрытие помогает поддерживать фокусировку света во внутреннем проводнике. На другом конце проводника сигнал принимается фотодиодным приемником, преобразующем световые сигналы в электрический сигнал.

Скорость передачи данных для оптоволоконного кабеля достигает от 100 Мбит/с до 2Гбит/с. Данные могут быть надежно переданы на расстояние до 2 км без повторителя.

Световые импульсы двигаются только в одном направлении, поэтому необходимо иметь два проводника: входящий и исходящий кабели.

Этот кабель сложен в установке, является самым дорогим типом кабеля.

2.2 Беспроводные технологии

Методы беспроводной передачи данных являются более удобной формой. Беспроводные технологии различаются по типам сигналов, частоте, расстоянию передачи.

Тремя главными типами беспроводной передачи данных являются: радиосвязь, связь в микроволновом диапазоне, инфракрасная связь.

2.2.1 Радиосвязь

Технологии радиосвязи пересылают данные на радиочастотах и практически не имеет ограничений на дальность. Используется для соединения локальных сетей на больших географических расстояниях.

Недостатки:

– радиопередача имеет высокую стоимость,

– подлежит государственному регулированию,

– крайне чувствительна к электронному или атмосферному влиянию,

– подвержена перехвату, поэтому требует шифрования.

2.2.2 Связь в микроволновом диапазоне

Поддерживает передачу данных в микроволновом диапазоне, использует высокие частоты и применяется как на коротких расстояниях, так и в глобальной коммуникациях.

Ограничение: передатчик и приемник должны быть в зоне прямой видимости друг друга.

Широко используется в глобальной передаче информации с помощью спутников и наземных спутниковых антенн.

2.2.3 Инфракрасная связь

Функционирует на высоких частотах, приближающихся к частотам видимого света. Могут быть использованы для установления двусторонней или широковещательной передачи данных на близкие расстояния. Обычно используют светодиоды для передачи инфракрасных волн приемнику.

Эти волны могут быть физически заблокированы и испытывают интерференцию с ярким светом, поэтому передача ограничена малыми расстояниями.

2.3 Параметры кабелей

При планировании сети или расширении существующей сети необходимо четко рассмотреть несколько вопросов, касающихся кабелей: стоимость, расстояние, скорость передачи данных, легкость установки, количество поддерживаемых узлов.

Сравнение типов кабелей по скорости передачи данных, стоимости кабелей, сложности установки, максимального расстояния передачи данных представлено в таблице 2.1.

Количество узлов на сегмент и узлов в сети при построении сетей с различным использованием кабелей представлено в таблице 2.2.

Таблица 2.1 – Сравнительная характеристика кабелей

Таблица 2.2 – Количество узлов в зависимости от типа сети


3 ОБМЕН ДАННЫХ В СЕТИ

3.1 Общие понятия. Протокол. Стек протоколов.

Главная цель, которая преследуется при соединении компьютеров в сеть – это возможность использования ресурсов каждого компьютера всеми пользователями сети. Для того, чтобы реализовать эту возможность, компьютеры, подсоединенные к сети, должны иметь необходимые для этого средства взаимодействия с другими компьютерами сети.

Задача разделения сетевых ресурсов включает в себя решение множества проблем – выбор способа адресации компьютеров и согласование электрических сигналов при установление электрической связи, обеспечение надежной передачи данных и обработка сообщений об ошибках, формирование отправляемых и интерпретация полученных сообщений, а также много других не менее важных задач.

Обычным подходом при решении сложной проблемы является ее разбиение на несколько частных проблем – подзадач. Для решения каждой подзадачи назначается некоторый модуль. При этом четко определяются функции каждого модуля и правила их взаимодействия.

Частным случаем декомпозиции задачи является многоуровневое представление, при котором все множество модулей, решающих подзадачи, разбивается на иерархически упорядоченные группы – уровни. Для каждого уровня определяется набор функций-запросов, с которыми к модулям данного уровня могут обращаться модули выше лежащего уровня для решения своих задач.

Такой набор функций, выполняемых данным уровнем для выше лежащего уровня, а также форматы сообщений, которыми обмениваются два соседних уровня в ходе своего взаимодействия, называется интерфейсом.

Правила взаимодействия двух машин могут быть описаны в виде набора процедур для каждого из уровней. Такие формализованные правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах, называются протоколами.

Согласованный набор протоколов разных уровней, достаточный для организации межсетевого взаимодействия, называется стеком протоколов .

При организации взаимодействия могут быть использованы два основных типа протоколов. В протоколах с установлением соединения (connection-oriented network service, CONS) перед обменом данными отправитель и получатель должны сначала установить логическое соединение, то есть договориться о параметрах процедуры обмена, которые будут действовать только в рамках данного соединения. После завершения диалога они должны разорвать это соединение. Когда устанавливается новое соединение, переговорная процедура выполняется заново.

Вторая группа протоколов - протоколы без предварительного установления соединения (connectionless network service, CLNS). Такие протоколы называются также дейтаграммными протоколами. Отправитель просто передает сообщение, когда оно готово.

3.2 Модель ISO/OSI

Из того, что протокол является соглашением, принятым двумя взаимодействующими объектами, в данном случае двумя работающими в сети компьютерами, совсем не следует, что он обязательно представляет собой стандарт. Но на практике при реализации сетей стремятся использовать стандартные протоколы. Это могут быть фирменные, национальные или международные стандарты.

Международная Организация по Стандартам (International Standards Organization, ISO) разработала модель, которая четко определяет различные уровни взаимодействия систем, дает им стандартные имена и указывает, какую работу должен делать каждый уровень. Эта модель называется моделью взаимодействия открытых систем (Open System Interconnection, OSI) или моделью ISO/OSI.

В модели OSI взаимодействие делится на семь уровней или слоев (рис.1). Каждый уровень имеет дело с одним определенным аспектом взаимодействия. Таким образом, проблема взаимодействия декомпозирована на 7 частных проблем, каждая из которых может быть решена независимо от других. Каждый уровень поддерживает интерфейсы с выше- и нижележащими уровнями.

Модель OSI описывает только системные средства взаимодействия, не касаясь приложений конечных пользователей. Приложения реализуют свои собственные протоколы взаимодействия, обращаясь к системным средствам. Следует иметь в виду, что приложение может взять на себя функции некоторых верхних уровней модели OSI, в таком случае, при необходимости межсетевого обмена оно обращается напрямую к системным средствам, выполняющим функции оставшихся нижних уровней модели OSI.

Приложение конечного пользователя может использовать системные средства взаимодействия не только для организации диалога с другим приложением, выполняющимся на другой машине, но и просто для получения услуг того или иного сетевого сервиса.

Итак, пусть приложение обращается с запросом к прикладному уровню, например к файловому сервису. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата, в которое помещает служебную информацию (заголовок) и, возможно, передаваемые данные. Затем это сообщение направляется представительному уровню.

Представительный уровень добавляет к сообщению свой заголовок и передает результат вниз сеансовому уровню, который в свою очередь добавляет свой заголовок и т.д.

Наконец, сообщение достигает самого низкого, физического уровня, который действительно передает его по линиям связи.

Когда сообщение по сети поступает на другую машину, оно последовательно перемещается вверх с уровня на уровень. Каждый уровень анализирует, обрабатывает и удаляет заголовок своего уровня, выполняет соответствующие данному уровню функции и передает сообщение вышележащему уровню.

Кроме термина "сообщение" (message) существуют и другие названия, используемые сетевыми специалистами для обозначения единицы обмена данными. В стандартах ISO для протоколов любого уровня используется такой термин как "протокольный блок данных" - Protocol Data Unit (PDU). Кроме этого, часто используются названия кадр (frame), пакет (packet), дейтаграмма (datagram).

3.3 Функции уровней модели ISO/OSI

Физический уровень. Этот уровень имеет дело с передачей битов по физическим каналам, таким, например, как коаксиальный кабель, витая пара или оптоволоконный кабель. К этому уровню имеют отношение характеристики физических сред передачи данных, такие как полоса пропускания, помехозащищенность, волновое сопротивление и другие. На этом же уровне определяются характеристики электрических сигналов, такие как требования к фронтам импульсов, уровням напряжения или тока передаваемого сигнала, тип кодирования, скорость передачи сигналов. Кроме этого, здесь стандартизуются типы разъемов и назначение каждого контакта.

Функции физического уровня реализуются во всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом.

Канальный уровень. Одной из задач канального уровня является проверка доступности среды передачи. Другой задачей канального уровня является реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами (frames). Канальный уровень обеспечивает корректность передачи каждого кадра, помещая специальную последовательность бит в начало и конец каждого кадра, чтобы отметить его, а также вычисляет контрольную сумму, суммируя все байты кадра определенным способом и добавляя контрольную сумму к кадру. Когда кадр приходит, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка.

В протоколах канального уровня, используемых в локальных сетях, заложена определенная структура связей между компьютерами и способы их адресации. Хотя канальный уровень и обеспечивает доставку кадра между любыми двумя узлами локальной сети, он это делает только в сети с совершенно определенной топологией связей, именно той топологией, для которой он был разработан. К таким типовым топологиям, поддерживаемым протоколами канального уровня локальных сетей, относятся общая шина, кольцо и звезда. Примерами протоколов канального уровня являются протоколы Ethernet, Token Ring, FDDI, 100VG-AnyLAN.

Сетевой уровень. Этот уровень служит для образования единой транспортной системы, объединяющей несколько сетей с различными принципами передачи информации между конечными узлами.

Сообщения сетевого уровня принято называть пакетами (packets). При организации доставки пакетов на сетевом уровне используется понятие "номер сети". В этом случае адрес получателя состоит из номера сети и номера компьютера в этой сети.

Для того, чтобы передать сообщение от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно совершить некоторое количество транзитных передач (hops) между сетями, каждый раз выбирая подходящий маршрут. Таким образом, маршрут представляет собой последовательность маршрутизаторов, через которые проходит пакет.

Проблема выбора наилучшего пути называется маршрутизацией и ее решение является главной задачей сетевого уровня. Эта проблема осложняется тем, что самый короткий путь не всегда самый лучший. Часто критерием при выборе маршрута является время передачи данных по этому маршруту, оно зависит от пропускной способности каналов связи и интенсивности трафика, которая может изменяться с течением времени.

На сетевом уровне определяется два вида протоколов. Первый вид относится к определению правил передачи пакетов с данными конечных узлов от узла к маршрутизатору и между маршрутизаторами. Именно эти протоколы обычно имеют в виду, когда говорят о протоколах сетевого уровня. К сетевому уровню относят и другой вид протоколов, называемых протоколами обмена маршрутной информацией. С помощью этих протоколов маршрутизаторы собирают информацию о топологии межсетевых соединений. Протоколы сетевого уровня реализуются программными модулями операционной системы, а также программными и аппаратными средствами маршрутизаторов.

Примерами протоколов сетевого уровня являются протокол межсетевого взаимодействия IP стека TCP/IP и протокол межсетевого обмена пакетами IPX стека Novell.

Транспортный уровень. На пути от отправителя к получателю пакеты могут быть искажены или утеряны. Хотя некоторые приложения имеют собственные средства обработки ошибок, существуют и такие, которые предпочитают сразу иметь дело с надежным соединением. Работа транспортного уровня заключается в том, чтобы обеспечить приложениям или верхним уровням стека - прикладному и сеансовому - передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем.

Как правило, все протоколы, начиная с транспортного уровня и выше, реализуются программными средствами конечных узлов сети - компонентами их сетевых операционных систем. В качестве примера транспортных протоколов можно привести протоколы TCP и UDP стека TCP/IP и протокол SPX стека Novell.

Сеансовый уровень. Сеансовый уровень обеспечивает управление диалогом для того, чтобы фиксировать, какая из сторон является активной в настоящий момент, а также предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке, вместо того, чтобы начинать все с начала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется.

Уровень представления. Этот уровень обеспечивает гарантию того, что информация, передаваемая прикладным уровнем, будет понятна прикладному уровню в другой системе. При необходимости уровень представления выполняет преобразование форматов данных в некоторый общий формат представления, а на приеме, соответственно, выполняет обратное преобразование. Таким образом, прикладные уровни могут преодолеть, например, синтаксические различия в представлении данных. На этом уровне может выполняться шифрование и дешифрование данных, благодаря которому секретность обмена данными обеспечивается сразу для всех прикладных сервисов. Примером протокола, работающего на уровне представления, является протокол Secure Socket Layer (SSL), который обеспечивает секретный обмен сообщениями для протоколов прикладного уровня стека TCP/IP.

Прикладной уровень. Прикладной уровень - это в действительности просто набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют свою совместную работу, например, с помощью протокола электронной почты. Единица данных, которой оперирует прикладной уровень, обычно называется сообщением (message).

Существует очень большое разнообразие протоколов прикладного уровня. Приведем в качестве примеров хотя бы несколько наиболее распространенных реализаций файловых сервисов: NCP в операционной системе Novell NetWare, SMB в Microsoft Windows NT, NFS, FTP и TFTP, входящие в стек TCP/IP.

3.4 Протоколы взаимодействия приложений и протоколы транспортной подсистемы

Функции всех уровней модели OSI могут быть отнесены к одной из двух групп: либо к функциям, зависящим от конкретной технической реализации сети, либо к функциям, ориентированным на работу с приложениями.

Три нижних уровня - физический, канальный и сетевой - являются сетезависимыми, то есть протоколы этих уровней тесно связаны с технической реализацией сети, с используемым коммуникационным оборудованием.

Три верхних уровня - сеансовый, уровень представления и прикладной - ориентированы на приложения и мало зависят от технических особенностей построения сети. На протоколы этих уровней не влияют никакие изменения в топологии сети, замена оборудования или переход на другую сетевую технологию.

Транспортный уровень является промежуточным, он скрывает все детали функционирования нижних уровней от верхних уровней. Это позволяет разрабатывать приложения, независящие от технических средств, непосредственно занимающихся транспортировкой сообщений.

Рисунок 2 показывает уровни модели OSI, на которых работают различные элементы сети.

Компьютер, с установленной на нем сетевой ОС, взаимодействует с другим компьютером с помощью протоколов всех семи уровней. Это взаимодействие компьютеры осуществляют через различные коммуникационные устройства: концентраторы, модемы, мосты, коммутаторы, маршрутизаторы, мультиплексоры. В зависимости от типа, коммуникационное устройство может работать либо только на физическом уровне (повторитель), либо на физическом и канальном (мост и коммутатор), либо на физическом, канальном и сетевом, иногда захватывая и транспортный уровень (маршрутизатор).

3.5 Функциональное соответствие видов коммуникационного оборудования уровням модели OSI

Лучшим способом для понимания отличий между сетевыми адаптерами, повторителями, мостами/коммутаторами и маршрутизаторами является рассмотрение их работы в терминах модели OSI. Соотношение между функциями этих устройств и уровнями модели OSI показано на рисунке 3.

Повторитель, который регенерирует сигналы, за счет чего позволяет увеличивать длину сети, работает на физическом уровне.

Сетевой адаптер работает на физическом и канальном уровнях. К физическому уровню относится та часть функций сетевого адаптера, которая связана с приемом и передачей сигналов по линии связи, а получение доступа к разделяемой среде передачи, распознавание МАС-адреса компьютера - это уже функция канального уровня.

Мосты выполняют большую часть своей работы на канальном уровне. Для них сеть представляется набором МАС-адресов устройств. Они извлекают эти адреса из заголовков, добавленных к пакетам на канальном уровне, и используют их во время обработки пакетов для принятия решения о том, на какой порт отправить тот или иной пакет. Мосты не имеют доступа к информации об адресах сетей, относящейся к более высокому уровню. Поэтому они ограничены в принятии решений о возможных путях или маршрутах перемещения пакетов по сети.

Маршрутизаторы работают на сетевом уровне модели OSI. Для маршрутизаторов сеть - это набор сетевых адресов устройств и множество сетевых путей. Маршрутизаторы анализируют все возможные пути между любыми двумя узлами сети и выбирают самый короткий из них. При выборе могут приниматься во внимание и другие факторы, например, состояние промежуточных узлов и линий связи, пропускная способность линий или стоимость передачи данных.

Для того, чтобы маршрутизатор мог выполнять возложенные на него функции ему должна быть доступна более развернутая информация о сети, нежели та, которая доступна мосту. В заголовке пакета сетевого уровня кроме сетевого адреса имеются данные, например, о критерии, который должен быть использован при выборе маршрута, о времени жизни пакета в сети, о том, какому протоколу верхнего уровня принадлежит пакет.

Благодаря использованию дополнительной информации, маршрутизатор может осуществлять больше операций с пакетами, чем мост/коммутатор. Поэтому программное обеспечение, необходимое для работы маршрутизатора, является более сложным.

На рисунке 3 показан еще один тип коммуникационных устройств - шлюз, который может работать на любом уровне модели OSI. Шлюз (gateway) - это устройство, выполняющее трансляцию протоколов. Шлюз размещается между взаимодействующими сетями и служит посредником, переводящим сообщения, поступающие из одной сети, в формат другой сети. Шлюз может быть реализован как чисто программными средствами, установленными на обычном компьютере, так и на базе специализированного компьютера. Трансляция одного стека протоколов в другой представляет собой сложную интеллектуальную задачу, требующую максимально полной информации о сети, поэтому шлюз использует заголовки всех транслируемых протоколов.

3.6 Спецификация IEEE 802

Примерно в то же время, когда появилась модель OSI, была опубликована спецификация IEEE 802, которая фактически расширяет сетевую модель OSI. Это расширение происходит на канальном и физическом уровнях, которые определяют как более чем один компьютер может получить доступ к сети, избежав конфликтов с другими компьютерами сети.

Этот стандарт детализирует эти уровни посредством разбиения канального уровня на 2 подуровня:

– Logical Link Control (LLC) – подуровень управления логической связью. Управляет связями между каналами данных и определяет использование точек логического интерфейса, называемых Services Access Point (Точки доступа у службам), которые другими компьютерами могут использоваться для передачи информации на верхние уровни модели OSI;

– Media Access Control (MAC) – подуровень управления доступом к устройствам. Предоставляет параллельный доступ для нескольких сетевых адаптеров на физическом уровне, имеет прямое взаимодействие с сетевой картой компьютера и отвечает за обеспечение безошибочной передачи данных между компьютерами в сети.

3.7 По стеку протоколов

Набор протоколов (или стек протоколов) представляет собой сочетание протоколов, которые совместно работают для обеспечения сетевого взаимодействия. Эти наборы протоколов обычно разбивают на три группы, соответствующие сетевой модели OSI:

– сетевые;

– транспортные;

– прикладные.

Сетевые протоколы предоставляют следующие услуги:

– адресацию и маршрутизацию информации;

– проверку на наличие ошибок;

– запрос повторной передачи;

– установление правил взаимодействия в конкретной сетевой среде.

Популярные сетевые протоколы:

– DDP (Delivery Datagram Protocol – Протокол доставки дейтаграмм). Протокол передачи данных Apple, используемый в AppleTalk.

– IP (Internet Protocol – Протокол Интернет). Часть набора протоколов TCP/IP, обеспечивающая адресную информацию и информацию о маршрутизации.

– IPX (Internetwork Packet eXchange – Межсетевой обмен пакетами) и NWLink. Протокол сетей Novell NetWare (и реализация этого протокола фирмой Microsoft), используемый для маршрутизации и направления пакетов.

– NetBEUI. Разработанный совместно IBM и Microsoft, этот протокол обеспечивает транспортные услуги для NetBIOS.

Транспортные протоколы отвечают за обеспечение надежной транспортировки данных между компьютерами.

Популярные транспортные протоколы:

– ATP (AppleTalk Transaction Protocol – Транзакционный протокол AppleTalk) и NBP (Name Binding Protocol – Протокол связывания имен). Сеансовый и транспортный протоколы AppleTalk.

– NetBIOS/NetBEUI. Первый – устанавливает соединение между компьютерами, а второй – предоставляет услуги передачи данных для этого соединения.

– SPX (Sequenced Packet exchange – Последовательный обмен пакетами) и NWLink. Ориентированный на соединения протокол Novell, используемый для обеспечения доставки данных (и реализация этого протокола фирмой Microsoft).

– TCP (Transmission Control Protocol – Протокол управления передачей). Часть набора протоколов TCP/IP, отвечающая за надежную доставку данных.

Прикладные протоколы, ответственные за взаимодействие приложений.

Популярные прикладные протоколы:

– AFP (AppleTalk File Protocol – Файловій протокол AppleTalk). Протокол удаленного управления файлами Macintosh.

– FTP (File Transfer Protocol – Протокол передачи данных). Еще один член набора протоколов TCP/IP, используемый для обеспечения услуг по передаче файлов.

– NCP (NetWare Core Protocol – Базовый протокол NetWare). Оболочка и редиректоры клиента Novell.

– SMTP (Simple Mail Transport Protocol – Простой протокол передачи почты). Член набора протоколов TCP/IP, отвечающий за передачу электронной почты.

– SNMP (Simple Network Management Protocol – Простой протокол управления сетью). Протокол TCP/IP, используемый для управления и наблюдения за сетевыми устройствами.


4 СЕТЕВОЕ ОБОРУДОВАНИЕ И ТОПОЛОГИИ

4.1 Сетевые компоненты

Существует множество сетевых устройств, которые можно использовать для создания, сегментирования и усовершенствования сети.

4.1.1 Сетевые карты

Сетевой адаптер (Network Interface Card, NIC ) - это периферийное устройство компьютера, непосредственно взаимодействующее со средой передачи данных, которая прямо или через другое коммуникационное оборудование связывает его с другими компьютерами. Это устройство решает задачи надежного обмена двоичными данными, представленными соответствующими электромагнитными сигналами, по внешним линиям связи. Как и любой контроллер компьютера, сетевой адаптер работает под управлением драйвера операционной системы.

В большинстве современных стандартов для локальных сетей предполагается, что между сетевыми адаптерами взаимодействующих компьютеров устанавливается специальное коммуникационное устройство (концентратор, мост, коммутатор или маршрутизатор), которое берет на себя некоторые функции по управлению потоком данных.

Сетевой адаптер обычно выполняет следующие функции:

Оформление передаваемой информации в виде кадра определенного формата. Кадр включает несколько служебных полей, среди которых имеется адрес компьютера назначения и контрольная сумма кадра.

Получение доступа к среде передачи данных . В локальных сетях в основном применяются разделяемые между группой компьютеров каналы связи (общая шина, кольцо), доступ к которым предоставляется по специальному алгоритму (наиболее часто применяются метод случайного доступа или метод с передачей маркера доступа по кольцу).

Кодирование последовательности бит кадра последовательностью электрических сигналов при передаче данных и декодирование при их приеме. Кодирование должно обеспечить передачу исходной информацию по линиям связи с определенной полосой пропускания и определенным уровнем помех таким образом, чтобы принимающая сторона смогла распознать с высокой степенью вероятности посланную информацию.

Преобразование информации из параллельной формы в последовательную и обратно. Эта операция связана с тем, что в вычислительных сетях информация передается в последовательной форме, бит за битом, а не побайтно, как внутри компьютера.

Синхронизация битов, байтов и кадров. Для устойчивого приема передаваемой информации необходимо поддержание постоянного синхронизма приемника и передатчика информации.

Сетевые адаптеры различаются по типу и разрядности используемой в компьютере внутренней шины данных - ISA, EISA, PCI, MCA.

Сетевые адаптеры различаются также по типу принятой в сети сетевой технологии - Ethernet, Token Ring, FDDI и т.п. Как правило, конкретная модель сетевого адаптера работает по определенной сетевой технологии (например, Ethernet).

В связи с тем, что для каждой технологии сейчас имеется возможность использования различных сред передачи, сетевой адаптер может поддерживать как одну, так и одновременно несколько сред. В случае, когда сетевой адаптер поддерживает только одну среду передачи данных, а необходимо использовать другую, применяются трансиверы и конверторы.

Трансивер (приемопередатчик, transmitter+receiver) - это часть сетевого адаптера, его оконечное устройство, выходящее на кабель. В вариантах Ethernet"а оказалось удобным выпускать сетевые адаптеры с портом AUI, к которому можно присоединить трансивер для требуемой среды.

Вместо подбора подходящего трансивера можно использовать конвертор , который может согласовать выход приемопередатчика, предназначенного для одной среды, с другой средой передачи данных (например, выход на витую пару преобразуется в выход на коаксиальный кабель).

4.1.2 Повторители и усилители

Как говорилось ранее, сигнал при перемещении по сети, ослабевает. Чтобы предотвратить это ослабление, можно использовать повторители и (или) усилители, которые усиливают сигнал, проходящий через них.

Повторители (repeater) используются в сетях с цифровым сигналом для борьбы с затуханием (ослаблением) сигнала. Когда репитер получает ослабленный сигнал, он очищает этот сигнал, усиливает и посылает следующему сегменту.

Усилители (amplifier), хоть и имеют схожее назначение, используются для увеличения дальности передачи в сетях, использующих аналоговый сигнал. Это называется широкополосной передачей. Носитель делится на несколько каналов, так что разные частоты могут передаваться параллельно.

Обычно сетевая архитектура определяет максимальное количество повторителей, которые могут быть установлены в отдельной сети. Причиной этого является феномен, известный как «задержка распространения». Период, требуемый каждому повторителю для очистки и усиления сигнала, умноженный на число повторителей, может приводить к заметным задержкам передачи данных по сети.

4.1.3 Концентраторы

Концентратор (HUB) представляет собой сетевое устройство, действующее на физическом уровне сетевой модели OSI, служащее в качестве центральной точки соединения и связующей линии в сетевой конфигурации «звезда».

Существует три основных типа концентраторов:

– пассивные (passive);

– активные (active);

– интеллектуальные (intelligent).

Пассивные концентраторы не требуют электроэнергии и действуют как физическая точка соединения, ничего не добавляя к проходящему сигналу).

Активные требуют энергию, которую используют для восстановления и усиления сигнала.

Интеллектуальные концентраторы могут предоставлять такие сервисы, как переключение пакетов (packet switching) и перенаправление трафика (traffic riuting).

4.1.4 Мосты

Мост (bridge) представляет собой устройство, используемое для соединения сетевых сегментов. Мосты можно рассматривать как усовершенствование повторителей, так как они уменьшают загрузку сети: мосты считывают адрес сетевой карты (MAC address) компьютера-получателя из каждого входящего пакета данных и просматривают специальные таблицы, чтобы определить, что делать с пакетом.

Мост функционирует на канальном уровне сетевой модели OSI.

Мост функционирует как повторитель, он получает данные из любого сегмента, но он более разборчив, чем повторитель. Если получатель находится в том же физическом сегменте, что и мост, то мост знает, что пакет больше не нужен. Если получатель находится в другом сегменте, мост знает, что пакет надо переслать.

Эта обработка позволяет уменьшить загрузку сети, поскольку сегмент не будет получать сообщений, которые к нему не относятся.

Мосты могут соединять сегменты, которые используют разные типы носителей (10BaseT, 10Base2), а также с разными схемами доступа к носителю (Ethernet, Token Ring).

4.1.5 Маршрутизаторы

Маршрутизатор (router) представляет собой сетевое коммуникационное устройство, работающее на сетевом уровне сетевой модели, и может связывать два и более сетевых сегментов (или подсетей).

Он функционирует подобно мосту, но для фильтрации трафика он использует не адрес сетевой карты компьютера, а информацию о сетевом адресе, передаваемую в относящейся к сетевому уровню части пакета.

После получения этой информации маршрутизатор использует таблицу маршрутизации, чтобы определить, куда направить пакет.

Существует два типа маршрутизирующих устройств: статические и динамические. Первые используют статическую таблицу маршрутизации, которую должен создавать и обновлять сетевой администратор. Вторые – создают и обновляют свои таблицы сами.

Маршрутизаторы могут уменьшить загрузку сети, увеличить пропускную способность, а также повысить надежность доставки данных.

Маршрутизатором может быть как специальное электронное устройство, так и специализированный компьютер, подключенный к нескольким сетевым сегментам с помощью нескольких сетевых карт.

Он может связывать несколько небольших подсетей, использующих различные протоколы, если используемые протоколы поддерживают маршрутизацию. Маршрутизируемые протоколы обладают способностью перенаправлять пакеты данных в другие сетевые сегменты (TCP/IP, IPX/SPX). Не маршрутизируемый протокол – NetBEUI. Он не может работать за пределами своей собственной подсети.

4.1.6 Шлюзы

Шлюз (gateway) представляет собой метод осуществления связи между двумя и более сетевыми сегментами. Позволяет взаимодействовать несходным системам в сети (Intel и Macintosh).

Другой функцией шлюзов является преобразование протоколов. Шлюз может получить протокол IPX/SPX, направленный клиенту, использующему протокол TCP/IP, на удаленном сегменте. Шлюз преобразует исходный протокол в требуемый протокол получателя.

Шлюз функционирует на транспортном уровне сетевой модели.

4.2 Типы сетевой топологии

Под топологией сети понимается описание ее физического расположения, то есть то, как компьютеры соединены в сети друг с другом и с помощью каких устройств входят в физическую топологию.

Существует четыре основных топологии:

– Bus (шина);

– Ring (кольцо);

– Star (звезда);

– Mesh (ячейка).

Физическая топология шина, именуемая также линейной шиной, состоит из единственного кабеля, к которому присоединены все компьютеры сегмента (рис. 4.1).

Сообщения посылаются по линии всем подключенным станциям вне зависимости от того, кто является получателем. Каждый компьютер про­веряет каждый пакет в проводе, чтобы определить получателя пакета. Если пакет предназначен для другой станции, то компьютер отвергает его. Если пакет предназначен данному компьютеру, то он получит и обработает его.

Рисунок 4.1 – Топология «шина»

Главный кабель шины, известный как магистраль, имеет на обоих концах заглушки (терминаторы) для предотвращения отражения сигнала. Обычно в сетях с шинной топологией используется два типа носителя: толстый и тонкий Ethernet.

Недостатки:

– трудно изолировать неполадки станции или другого сетевого компонента;

– неполадки в магистральном кабеле могут привести к выходу из строя всей сети.

4.2.2 Кольцо

Топология Ring (кольцо) используется в основном в сетях Token Ring и FDDI (волоконно-оптических).

В физической топологии «кольцо» линии передачи данных фактически образуют логическое кольцо, к которому подключены все компьютеры сети (рис. 4.2).

Рисунок 4.2 – Топология «кольцо»

Доступ к носителю в кольце осуществляется посредством маркеров (token), которые пускаются по кругу от станции к станции, давая им возможность переслать пакет, если это нужно. Компьютер может посылать данные только тогда, когда владеет маркером.

Так как каждый компьютер при этой топологии является частью кольца, он имеет возможность пересылать любые полученные им пакеты данных, адресованные другой станции.

Недостатки:

– неполадки на одной станции могут привести к отказу всей сети;

– при переконфигурации любой части сети необходимо временно отключать всю сеть.

4.2.3 Звезда

В топологии Star (звезда) все компьютеры в сети соединены друг с другом с помощью центрального концентратора (рис. 4.3).

Все данные, которые посылает станция, направляются прямо на концентратор, который пересылает пакет в направлении получателя.

В этой топологии только один компьютер может посылать данные в конкретный момент времени. При одновременной попытке двух и более компьютеров переслать данные, все они получат отказ и будут вынуждены ждать случайный интервал времени, чтобы повторить попытку.

Эти сети лучше масштабируются, чем другие сети. Неполадки на одной станции не выводят из строя всю сеть. Наличие центрального концентратора облегчает добавление нового компьютера.

Недостатки:

– требует больше кабеля, чем остальные топологии;

– выход из строя концентратора выведет из строя весь сегмент сети.

Рисунок 4.3 – Топология «звезда»

Топология Mesh (ячейка) соединяет все компьютеры попарно (рис. 4.4).

Рисунок 4.4 – Топология «ячейка»

Сети Mesh используют значительно большее количество кабеля, чем другие топологии. Эти сети значительно труднее устанавливать. Но эти сети устойчивы к сбоям (способны работать при наличии повреждений).

4.2.5 Смешанные топологии

На практике существует множество комбинаций главных сетевых топологий. Рассмотрим основные из них.

Star Bus

Смешанная топология Star Bus (звезда на шине) объединяет топологии Шина и Звезда (рис. 4.5).

Топология Star Ring (звезда на кольце) известна также под названием Star-wired Ring, поскольку сам концентратор выполнен как кольцо.

Эта сеть идентична топологии «звезда», но на самом деле концентратор соединен проводами как логическое кольцо.

Также как и в физическом кольце, в этой сети посылаются маркеры для определения порядка передачи данных компьютерами.

Рисунок 4.5 – Топология «звезда на шине»

Hybrid Mesh

Поскольку реализация настоящей топологии Mesh в крупных сетях может быть дорогой, сеть топологии Hybrid Mesh может предоставить некоторые из существенных преимуществ настоящей сети Mesh.

В основном применяется для соединения серверов, хранящих критически важные данные (рис. 4.6).

Рисунок 4.6 – Топология «гибридная ячейка»


5 ГЛОБАЛЬНАЯ СЕТЬ ИНТЕРНЕТ

5.1 Теоретические основы Интернета

Ранние эксперименты по передаче и приему информации с помощью компьютеров начались еще в 50-х годах и имели лабораторный характер. Лишь в конце 60-х годов на средства Агентства Перспективных Разработок министерства обороны США была создана сеть национального масштаба . Она получила название ARPANET . Эта сеть связывала несколько крупных научных, исследовательских и образовательных центров. Ее основной задачей была координация групп коллективов, работающих над едиными научно-техническими проектами, а основным назначением стал обмен электронной почтой файлами с научной и проектно-конструкторской документацией.

Сеть ARPANET заработала в 1969 году. Немногочисленные узлы, входившие в нее в то время, были связаны выделенными линиями. Прием и передача информации обеспечивались программами, работающими на узловых компьютерах. Сеть посте­пенно расширялась за счет подключения новых узлов, а к началу 80-х годов на базе наиболее крупных узлов были созданы свои региональные сети, воссоздающие общую архитектуру ARPANET на более низком уровне (в региональном или локаль­ном масштабе).

По-настоящему рождением Интернета принято считать 1983 год. В этом году произошли революционные изменения в программном обеспечении компьютерной связи. Днем рождения Интернета в совре­менном понимании этого слова стала дата стандартизации протокола связи TCP/IP, лежащего в основе Всемирной сети по нынешний день.

TCP/IP - это не один сетевой протокол, а несколько протоколов, лежащих на разных уровнях сетевой модели OSI (это так называемый стек протоколов). Из них протокол TCP - протокол транспортного уровня. Он управляет тем, как происходит передача информации. Протокол IP- адресный. Он принадле­жит сетевому уровню и определяет, куда происходит передача.

Понравилось? Лайкни нас на Facebook