Современные носители информации. Внешние носители информации Носитель информации виды носителей информации примеры

Потребность хранить какую-либо информацию у человека появилась еще в доисторические времена, чему яркий пример - наскальная живопись, которая сохранилась и по сей день. Наскальные рисунки можно по праву назвать самым износостойким носителем информации на данный момент, хотя с портативностью и удобством использования есть некоторые трудности. С появлением ЭВМ (и ПК в частности) разработка емких и удобных в использовании носителей информации стала особенно актуальной.

Бумажные носители

В первых компьютерах использовалась перфокарты и перфорированная бумажная лента, намотанная на бобины, так называемая перфолента. Ее прародителями были автоматизированные ткацкие станки, в частности машина Жаккара, финальный вариант которой был создан изобретателем (в честь которого она и названа) в 1808 году. Для автоматизации процесса подачи нитей использовались перфорированные пластины:

Перфокарты - картонные карточки, которые использовали подобный метод. Их было много разновидностей, как с отверстиями, которые отвечали за "1" в двоичном коде, так и текстового вида. Самым распространенным был формат IBM: размер карты составлял 187х83 мм, на ней инфомация располагалась в 12 строк и 80 столбцов. В современных терминах, одна перфокарта хранила 120 байт информации. Для ввода информации перфокарты нужно было подавать в определенной последовательности.

В перфоленте используется тот же принцип. Информация хранится на ней в виде отверстий. Первые компьютеры, созданные в 40-х годах прошлого века работали как с вводимыми с помощью перфоленты в реальном времени данными, так и использовали некое подобие оперативной памяти, преимущественно с использованием электронно-лучевых трубок. Бумажные носители активно использовались в 20-50 годах, после чего постепенно начали заменяться магнитными носителями.

Магнитные носители

В 50-х годах началось активное развитие магнитных носителей. За основу взято было явление электромагнетизма (образование магнитного поля в проводнике при пропускании тока через него). Магнитный носитель состоит из поверхности, покрытой ферромагнетиком и считывающей/пишущей головки (сердечник с обмоткой). По обмотке протекает ток, появляется магнитное поле определенной полярности (в зависимости от направления тока). Магнитное поле воздействует на ферромагнетик и магнитные частицы в нем поляризуются в направлении действия поля и создают остаточную намагниченность. Для записи данных на разные участки производится воздействие магнитным полем разной полярности, а при считывании данных регистрируются зоны, в которых изменяется направление остаточной намагниченности ферромагнетика. Первыми такими носителями были магнитные барабаны: большие металлические цилиндры, покрытые ферромагнетиком. Вокруг них устанавливались считывающие головки.

После них появился жесткий диск в 1956 году, это был 305 RAMAC компании IBM, который состоял из 50 дисков диаметром 60 см, по размером был соизмерим с большим холодильником современного формата Side-by-Side и весил чуть меньше тонны. Его объем составлял невероятные по тем временам 5 МБ. Головка свободно перемещалась по поверхности диска и скорость работы была выше, чем у магнитных барабанов. Процесс погрузки 305 RAMAC в самолет:

Объем быстро начал увеличиваться и в конце 60-х годов IBM выпустила высокоскоростной накопитель с двумя дисками емкостью по 30 МБ. Производители активно работали над уменьшением габаритов и к 1980 году жесткий диск имел размеры 5.25-дюймового привода. С тех времен конструкция, технологии, объем, плотность и размеры претерпели колоссальных изменений и самыми популярными стали форм-факторы и 3.5, 2.5 дюйма, в меньшей мере - 1.8 дюйма, а объемы уже достигают десятка терабайт на одном носителе.

Некоторое время использовался еще формат IBM Microdrive, который представлял из себя миниатюрный жесткий диск в форм-факторе карты памяти CompactFlash тип II. Выпущен в 2003 году, позже продан компании Hitachi.

Параллельно развивалась магнитная лента. Появилась она вместе с выходом первого американского коммерческого компьютера UNIVAC I в 1951 году. Опять же постаралась компания IBM. Магнитная лента представляла из себя тонкую пластиковую полосу с магниточувствительным покрытием. С тех времен использовалась в самых разных форм-факторах.

Начиная с бобин, ленточных картриджей и заканчивая компакт-кассетами и видеокассетами VHS. В компьютерах использовались начиная с 70 годов и заканчивая 90-ми (уже в значительно меньших количествах). Часто в качестве внешнего носителя к ПК использовался подключаемый магнитофон.

Накопители на магнитной ленте под названием Стримеры применяются и сейчас, преимущественно в промышленности и крупном бизнесе. На данный момент используются бобины стандарта Linear Tape-Open (LTO), а рекорд в этом году поставили IBM и FujiFilm, умудрившись записать на стандартную бобину 154 терабайта информации. Предыдущий рекорд - 2.5 терабайт, LTO 2012 года.

Еще один тип магнитных носителей - дискеты или флоппи-диск. Тут слой ферромагнетика наносится на гибкую, легкую основу и помещается в пластиковый корпус. Такие носители были просты с точки зрения изготовления и отличались невысокой стоимостью. Первая дискета имела форм-фактор 8 дюймов и появилась в конце 60-х. Создатель - опять IBM. К 1975 году емкость достигла 1 МБ. Хотя популярность дискеты заработали благодаря выходцам из IBM, которые основали собственную компанию Shugart Associates и в 1976 году выпустили дискету формата 5.25 дюйма, емкость составляла 110 КБ. К 1984 году емкость уже составляла 1.2 МБ, а Sony подсуетилась с более компактным форм-фактором 3.5 дюйма. Такие дискеты до сих пор можно найти у многих дома.

Компания Iomega выпустила в 1980-х картриджи с магнитными дисками Bernoulli Box, емкостью 10 и 20 МБ, а в 1994 году - так называемые Zip размера 3.5 дюйма объемом 100 МБ, до конца 90-х они достаточно активно использовались, но конкурировать с компакт-дисками им было не по зубам.

Оптические носители

Оптические носители имеют форму дисков, чтение с них ведется с помощью оптического излучения, обычно лазера. Луч лазера направляется на специальный слой и отражается от него. При отражении луч модулируется мельчайшими выемками на специальном слое, при регистрации и декодировании этих изменений восстанавливается записанная на диск информация. Впервые технологию оптической записи с использованием светопропускающего носителя была разработана Дэвидом Полом Греггом в 1958 году и запатентована в 1961 и 1990 годах, а в 1969 году компания Philips создала так называемый LaserDisc , в котором свет отражался. Впервые публике LaserDisc был показан в 1972 году, а в продажу поступил в 1978. По размеру он был близок к виниловым пластинкам и предназначался для фильмов.

В семидесятых годах началась разработка оптических носителей нового образца, в результате Philips и Sony представили в 1980 году формат CD (Compact Disk), который был впервые продемонстрирован в 1980 году. В продажу компакт-диски и аппаратура поступили в 1982 году. Изначально использовались для аудио, помещалось до 74 минут. В 1984 году Philips и Sony создали стандарт CD-ROM (Compact Disc Read Only Memory) для любых типов данных. Объем диска составлял 650 МБ, позже - 700 МБ. Первые диски, которые можно было записывать в домашних условиях, а не на заводе были выпущены в 1988 году и получили названиеCD-R (Compact Disc Recordable), а CD-RW, позволяющие многократную перезапись данных на диске, появились уже в 1997.

Форм-фактор не менялся, увеличивалась плотность записи. В 1996 году появился формат DVD (Digital Versatile Disc), который имел ту же форму и диаметр 12 см, а объем - 4.7 ГБ или 8.5 ГБ у двухслойного. Для работы с DVD-дисками были выпущены соответствующие приводы, обратно совместимые с CD. В последующие годы было выпущено еще несколько стандартов DVD.

В 2002 году миру были представлены два разных и несовместимых формата оптических дисков нового поколения: HD DVD и Blu-ray Disc (BD). В обоих случаях для записи и чтения данных используется голубой лазер с длинной волны 405 нм, что позволило еще увеличить плотность. HD DVD способен хранить 15 ГБ, 30 ГБ или 45 ГБ (один, два или три слоя), Blu-ray - 25, 50, 100 и 128 ГБ. Последний стал более популярен и 2008 году компания Toshiba (один из создателей) отказалась от HD DVD.

Полупроводниковые носители

В 1984 году компания Toshiba предложила полупроводниковые носители, так называемую флэш-память NAND, которая стала популярна спустя десятилетие после изобретения. Второй вариант NOR был предложен Intel в 1988 году и используется для хранения программных кодов, например BIOS. NAND-память используется сейчас в картах памяти , флэшках, SSD-накопителях и гибридных жестких дисках.

Технология NAND позволяет создавать чипы с высокой плотностью записи, она компактна, менее энергозатратна в использовании и имеет более высокую скорость работы (в сравнении с жесткими дисками). Основным минусом на данный момент является достаточно высокая стоимость.

Облачные хранилища

С развитием всемирной сети, увеличением скоростей и мобильного интернета появились многочисленные облачные хранилища, в которых данные хранятся на многочисленных распределенных в сети серверах. Данные хранятся и обрабатываются в так называемом виртуальном облаке и пользователь имеет к ним доступ при наличии доступа в интернет. Физически серверы могут находиться удаленно друг от друга. Есть как специализированные сервисы типа Dropbox, так и варианты компаний-производителей ПО или устройств. У Microsoft - OneDrive (ранее SkyDrive), iCloud у Apple, Google Диск и так далее.

Носитель информации (информационный носитель) – любой материальный объект, используемый человеком для хранения информации. Это может быть, например, камень, дерево, бумага, металл, пластмассы, кремний (и другие виды полупроводников), лента с намагниченным слоем (в бобинах и кассетах), фотоматериал, пластик со специальными свойствами (напр., в оптических дисках) и т. д., и т. п.

Носителем информации может быть любой объект, с которого возможно чтение (считывание) имеющейся на нём информации.

Носители информации применяются для:

  • записи;
  • хранения;
  • чтения;
  • передачи (распространения) информации.

Зачастую сам носитель информации помещается в защитную оболочку, повышающую его сохранность и, соответственно, надёжность сохранения информации (например, бумажные листы помещают в обложку, микросхему памяти – в пластик (смарт-карта), магнитную ленту – в корпус и т. д.).

К электронным носителям относят носители для однократной или многократной записи (обычно цифровой) электрическим способом:

  • оптические диски (CD-ROM, DVD-ROM, Blu-ray Disc);
  • полупроводниковые (флеш-память, дискеты и т. п.);
  • CD-диски (CD – Compact Disk, компакт диск), на который может быть записано до 700 Мбайт информации;
  • DVD-диски (DVD – Digital Versatile Disk, цифровой универсальный диск), которые имеют значительно большую информационную ёмкость (4,7 Гбайт), так как оптические дорожки на них имеют меньшую толщину и размещены более плотно;
  • диски HR DVD и Blu-ray, информационная ёмкость которых в 3–5 раз превосходит информационную ёмкость DVD-дисков за счёт использования синего лазера с длиной волны 405 нанометров.

Электронные носители имеют значительные преимущества перед бумажными (бумажные листы, газеты, журналы):

  • по объёму (размеру) хранимой информации;
  • по удельной стоимости хранения;
  • по экономичности и оперативности предоставления актуальной (предназначенной для недолговременного хранения) информации;
  • по возможности предоставления информации в виде, удобном потребителю (форматирование, сортировка).

Есть и недостатки:

  • хрупкость устройств считывания;
  • вес (масса) (в некоторых случаях);
  • зависимость от источников электропитания;
  • необходимость наличия устройства считывания/записи для каждого типа и формата носителя.

Накопитель на жёстких магнитных дисках или НЖМД (англ. hard (magnetic) disk drive, HDD, HMDD), жёсткий диск – запоминающее устройство (устройство хранения информации), основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.

В отличие от «гибкого» диска (дискеты), информация в НЖМД записывается на жёсткие пластины, покрытые слоем ферромагнитного материала – магнитные диски. В НЖМД используется одна или несколько пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной («парковочной») зоне, где исключён их нештатный контакт с поверхностью дисков.

Также, в отличие от гибкого диска, носитель информации обычно совмещают с накопителем, приводом и блоком электроники. Такие жёсткие диски часто используются в качестве несъёмного носителя информации.

Оптические (лазерные) диски в настоящее время являются наиболее популярными носителями информации. В них используется оптический принцип записи и считывания информации с помощью лазерного луча.

DVD-диски могут быть двухслойными (емкость 8,5 Гбайт), при этом оба слоя имеют отражающую поверхность, несущую информацию. Кроме того, информационная емкость DVD-дисков может быть еще удвоена (до 17 Гбайт), так как информация может быть записана на двух сторонах.

Накопители оптических дисков делятся на три вида:

  • без возможности записи - CD-ROM и DVD-ROM (ROM – Read Only Memory, память только для чтения). На дисках CD-ROM и DVD-ROM хранится информация, которая была записана на них в процессе изготовления. Запись на них новой информации невозможна;
  • с однократной записью и многократным чтением – CD-R и DVD±R (R – recordable, записываемый). На дисках CD-R и DVD±R информация может быть записана, но только один раз;
  • с возможностью перезаписи – CD-RW и DVD±RW (RW – Rewritable, перезаписываемый). На дисках CD-RW и DVD±RW информация может быть записана и стерта многократно.

Основные характеристики оптических дисководов:

  • емкость диска (CD – до 700 Мбайт, DVD – до 17 Гбайт)
  • скорость передачи данных от носителя в оперативную память – измеряется в долях, кратных скорости 150 Кбайт/сек для CD-дисководов;
  • время доступа – время, нужное для поиска информации на диске, измеряется в миллисекундах (для CD 80–400 мс).

В настоящее время широкое распространение получили 52х-скоростные CD-дисководы – до 7,8 Мбайт/сек. Запись CD-RW дисков производится на меньшей скорости (например, 32х-кратной). Поэтому CD-дисководы маркируются тремя числами «скорость чтения х скорость записи CD-R х скорость записи CD-RW» (например, «52х52х32»).
DVD-дисководы также маркируются тремя числами (например, «16х8х6»).

При соблюдении правил хранения (хранение в футлярах в вертикальном положении) и эксплуатации (без нанесения царапин и загрязнений) оптические носители могут сохранять информацию в течение десятков лет.

Флеш-память (flash memory) – относится к полупроводникам электрически перепрограммируемой памяти (EEPROM). Благодаря техническим решениям, невысокой стоимости, большому объёму, низкому энергопотреблению, высокой скорости работы, компактности и механической прочности, флеш-память встраивают в цифровые портативные устройства и носители информации. Основное достоинство этого устройства в том, что оно энергонезависимое и ему не нужно электричество для хранения данных. Всю хранящуюся информацию во флэш-памяти можно считать бесконечное количество раз, а вот количество полных циклов записи, к сожалению, ограничено.

У флеш-памяти есть как свои преимущества перед другими накопителями (жесткие диски и оптические накопители) , так и свои недостатки, с которыми вы можете познакомиться из таблицы, расположенной ниже.

Тип накопителя Преимущества Недостатки
Жесткий диск Большой объём хранимой информации. Высокая скорость работы. Дешевизна хранения данных (в расчете на 1 Мбайт) Большие габариты. Чувствительность к вибрации. Шум. Тепловыделение
Оптический диск Удобство транспортировки. Дешевизна хранения информации. Возможность тиражирования Небольшой объём. Нужно считывающее устройство. Ограничения при операциях (чтение, запись). Невысокая скорость работы. Чувствительность к вибрации. Шум
Флеш-память Высокая скорость доступа к данным. Экономное энергопотребление. Устойчивость к вибрациям. Удобство подключения к компьютеру. Компактные размеры Ограниченное количество циклов записи

В современном обществе можно выделить три основных вида носителей информации:

1) бумажный;

2) магнитный;

3) оптический.

Современные микросхемы памяти позволяют хранить в 1 см 3 до 10 10 битов информации, однако это в 100 миллиардов раз меньше, чем в ДНК. Можно сказать, что современные технологии пока существенно проигрывают биологической эволюции.

Однако если сравнивать информационную емкость традиционных носителей информации (книг) и современных компьютерных носителей, то прогресс очевиден:

Лист формата А4 с текстом (набран на компьютере шрифтом 12-го кегля с одинарным интервалом) - около 3500 символов

Страница учебника - 2000 символов

Гибкий магнитный диск – 1,44 Мб

Оптический диск CD-R(W) – 700 Мб

Оптический диск DVD – 4,2 Гб

Флэш-накопитель - несколько Гб

Съемный жесткий диск или Жесткий магнитный диск– сотни Гб

Таким образом, на дискете может храниться 2-3 книги, а на жестком магнитном диске или DVD - целая библиотека, включающая десятки тысяч книг.

Достоинства и недостатки хранения информации во внутренней и внешней памяти. (Достоинство внутренней памяти - быстротавоспроизведения информации, а недостаток- со временем часть информации забывается. Достоинство внешней памяти- большие объемы информации хранится долго, а недостаток- для доступа к определенной информации требуется время (например, чтобы подготовить реферат по предмету необходимо найти, проанализировать и выбрать подходящий материал))

Архив информации

Одним из наиболее широко распространенных видов сервисных программ являются программы, предназначенные для архивации, упаковки файлов путем сжатия хранимой в них информации.

Сжатие информации - это процесс преобразования информации, хранящейся в файле, к виду, при котором уменьшается избыточность в ее представлении и соответственно требуется меньший объем памяти для хранения.

Сжатие информации в файлах производится за счет устранения избыточности различными способами, например за счет упрощения кодов, исключения из них постоянных битов или представления повторяющихся символов или повторяющейся последовательности символов в виде коэффициента повторения и соответствующих символов. Применяются различные алгоритмы подобного сжатия информации.

Сжиматься могут как один, так и несколько файлов, которые в сжатом виде помещаются в так называемый архивный файл или архив.

Архивный файл - это специальным образом организованный файл, содержащий в себе один или несколько файлов в сжатом или несжатом виде и служебную информацию об именах файлов, дате и времени их создания или модификации, размерах и т.п.

Целью упаковки файлов обычно являются обеспечение более компактного размещения информации на диске, сокращение времени и соответственно стоимости передачи информации по каналам связи в компьютерных сетях. Кроме того, упаковка в один архивный файл группы файлов существенно упрощает их перенос с одного компьютера на другой, сокращает время копирования файлов на диски, позволяет защитить информацию от несанкционированного доступа, способствует защите от заражения компьютерными вирусами.

Степень сжатия зависит от используемой программы, метода сжатия и типа исходного файла. Наиболее хорошо сжимаются файлы графических образов, текстовые файлы и файлы данных, для которых степень сжатия может достигать 5 - 40%, меньше сжимаются файлы исполняемых программ и загрузочных модулей - 60 - 90%. Почти не сжимаются архивные файлы. Программы для архивации отличаются используемыми методами сжатия, что соответственно влияет на степень сжатия.

Архивация (упаковка) - помещение (загрузка) исходных файлов в архивный файл в сжатом или несжатом виде. Разархивация (распаковка) - процесс восстановления файлов из архива точно в таком виде, какой они имели до загрузки в архив. При распаковке файлы извлекаются из архива и помещаются на диск или в оперативную память;

Программы, осуществляющие упаковку и распаковку файлов, называются программами-архиваторами .

Большие по объему архивные файлы могут быть размещены на нескольких дисках (томах). Такие архивы называются многотомными. Том - это составная часть многотомного архива. Создавая архив из нескольких частей, можно записать его части на несколько дискет.

Основными характеристиками программ-архиваторов являются:

скорость работы;

сервис (набор функций архиватора);

степень сжатия – отношение размера исходного файла к размеру упакованного файла.

Основными функциями архиваторов являются:

· создание архивных файлов из отдельных (или всех) файлов текущего каталога и его подкаталогов, загружая в один архив до 32 000 файлов;

· добавление файлов в архив;

· извлечение и удаление файлов из архива;

· просмотр содержимого архива;

· просмотр содержимого архивированных файлов и поиск строк в архивированных файлах;

· ввод в архив комментарии к файлам;

· создание многотомных архивов;

· создание самораспаковывающихся архивов, как в одном томе, так и в виде нескольких томов;

· обеспечение защиты информации в в архиве и доступ к файлам, помещенным в архив, защиту каждого из помещенных в архив файлов циклическим кодом;

· тестирование архива, проверка сохранности в нем информации;

· восстановление файлов (частично или полностью) из поврежденных архивов;

· поддержки типов архивов, созданных другими архиваторами и др.

26.04.2013

Записывая ценные данные на современные носители, мы особо не задумываемся, сколько лет сможем на них рассчитывать. Уходят в небытие личные архивы, интересные далеко не только членам одной семьи. Для того чтобы понять, как выбраться из такой ситуации, стоит бросить ретроспективный взгляд на особенности различных носителей и способов представления информации.

аписывая ценные данные на современные носители, мы особо не задумываемся, сколько лет сможем на них рассчитывать. О цифрах и сроках рассказывает Юрий Ревич.

Каждой семье в какой-то момент приходится решать, что делать с унаследованными от родителей коллекциями виниловых пластинок или магнитофонных катушек, с рулончиками фотопленки и альбомами, набитыми пожелтевшими фотографиями. Трижды на памяти представителей старшего поколения происходила смена физических принципов звукозаписи, а звуковые носители (и, конечно, устройства для их воспроизведения) изменялись 6 раз! Еще в 50-е годы прошлого века это были шеллаковые пластинки (78 об/мин), затем их сменили виниловые «долгоиграющие» диски (33,3 об/мин). Почти одновременно возникли бытовые катушечные магнитофоны, а затем появились и кассетные. В середине 1980-х годов все аналоговые устройства скопом были вытеснены цифровыми оптическими компакт-дисками. А пять–десять лет назад появились универсальные миниатюрные флеш-карты, причем основным каналом распространения звукозаписей вообще становятся нематериальные сущности – файлы, скачиваемые через Интернет.

Смены носителей видеопродукции совершались еще быстрее. Пленка для любительских кинокамер (8- и 16-мм), ставших общедоступными в конце 1950-х–начале 1960-х годов, уже в 1980-х годах была вытеснена бытовыми видеокассетами формата VHS. Потребители еще только начали обзаводиться видеотеками на кассетах, как появились DVD, аналогичные по устройству звуковому компакт-диску. В конце концов, любительская видеозапись пришла, подобно звукозаписи, к компактным компьютерным форматам файлов, которые легко распространять через Сеть.

У многих при взгляде на это разнообразие опускаются руки – так уходят в небытие личные архивы, интересные далеко не только членам одной семьи. Для того чтобы понять, как выбраться из такой ситуации, стоит бросить ретроспективный взгляд на особенности различных носителей и способов представления информации.

Долговечность аналоговых носителей

Как ни странно, чем более носитель продвинут с технической точки зрения, тем меньше срок его службы. И данное правило почти не имеет исключений. Книги и рукописи на пергаменте могут храниться тысячелетиями, не говоря уже о глиняных табличках или надписях на камне. Правда, библиотеки, случается, горят, а недавно весь мир увидел воочию, что и камень не устоит, если кто-то захочет целенаправленно уничтожить памятники культуры - в 2001 г. талибы взорвали простоявшие больше полутора тысяч лет Бамианские статуи Будды, оправдав этим поступком в глазах всего мира вторжение западных войск в Афганистан.

Если исключить столь радикальные методы воздействия, беречь от влаги, света, грызунов и насекомых, то бумажные издания, выпущенные до начала XIX века, могут храниться сотни лет. В конце XVIII века, к огорчению архивистов, изобрели способ изготовления дешевой бумаги из древесины на автоматических или полуавтоматических машинах. Такая бумага намного дешевле старинной, но желтеет и становится ломкой за несколько десятилетий, а синтетические красители на ней выцветают. Причем на свету это происходит гораздо быстрее, но «древесная» бумага портится в любом случае, независимо от тщательности хранения, по «внутренним» причинам.

Интересно, что в Советском Союзе действовала правительственная программа по выпуску долговечных бумаг для важных документов. К 1990-м годам начался выпуск бумаги для делопроизводства, рассчитанной на хранение до 850 и 1000 лет. Однако компьютерная революция сделала реализацию такой программы ненужной – документы стали хранить на электронных носителях, к чему мы еще вернемся.

В ходе технологической революции конца XIX–середины ХХ века появились принципиально новые носители информации, но бумага, даже ухудшенная массовым производством, осталась в этом ряду одним из самых надежных. Единственная разновидность носителей, сравнимая по долговечности с бумагой, – черно-белая фотопленка на полиэфирной основе, которую начали производить примерно с 1960-х годов. Век же целлулоидной пленки, выпускавшейся до этого, даже короче, чем у газетной бумаги. Целлулоид содержит летучие вещества, которые со временем постепенно испаряются, из-за чего пленка коробится, деформируется и теряет прозрачность.

Основная слабость аналоговой фотографии заключается в ее главном компоненте – желатиновом слое. Для примера можно привести оригиналы цветных фотографий Сергея Прокудина-Горского, сделанных в начале XX века, каждая из которых представляет собой набор из трех цветоделенных негативов на стеклянной подложке. Они хранятся в щадящих условиях Библиотеки Конгресса (США) с 1948 г., но при совмещении каждый из трех цветов приходится «подтягивать» компьютерными методами – настолько они деформировались менее чем за сто лет. Желатин имеет свойство пересыхать и деформироваться со временем и, кроме всего прочего, не выносит даже слабого нагревания. Изображение на негативных пленках, которые, в отличие от отпечатков, не подвергают специальному дублению, можно просто смыть горячей водой из-под крана.

Цветные красители в пленке и отпечатках имеют свойство самопроизвольно выцветать даже при хранении в темноте. Цветная кинопленка отечественного производства, особенно произведенная до 1970–1980-х годов, хранится не более нескольких десятилетий. В конце 2000-х по телевидению показали неотреставрированную копию «Кавказской пленницы», которая менее чем за полвека выцвела почти полностью. Особенно это было заметно в эпизодах с преобладанием светлых тонов.

Достаточно капризны и магнитофонные ленты, причем в первую очередь те, на которых хранятся самые ценные и редкие записи 1950–60-х годов, времени возникновения отечественной авторской песни и рока, когда в нашей стране еще в ходу были катушечные магнитофоны под примитивную ленту «Тип 2». Эти ленты пересыхают и осыпаются – знатоки советуют перед перезаписью дать такой катушке отлежаться в герметичном пакетике вместе с увлажненной ваткой (однако долго держать во влажной атмосфере ленты тоже нельзя!). Неотъемлемый недостаток всех магнитофонных лент – способность к так называемому копир-эффекту, когда намагниченный слой в одном витке рулона со временем «отпечатывается» в соседних витках. Для уменьшения этого эффекта ленты следует хранить в холодильниках и изредка перематывать. Держать при пониженных температурах полезно также для того, чтобы предотвратить самопроизвольное снижение намагниченности из-за теплового движения атомов в частицах магнитного слоя.

Частая эксплуатация магнитофонных лент и кинопленок способствует их быстрому изнашиванию. Износ при эксплуатации – вообще характерное свойство аналоговых носителей. Особенно ярким примером этого служат шеллаковые пластинки первой половины ХХ века. На примитивных механических граммофонах они выдерживали всего несколько десятков циклов воспроизведения. О силе воздействия на носитель можно судить по тому факту, что после каждого проигрывания приходилось заменять стальную иглу, истиравшуюся от трения о дорожку. Пришедшие на смену шеллаку виниловые диски, подобно черно-белой пленке, могут теоретически вечно храниться в архивах, но также быстро портятся при проигрывании. Показательно, что несколько десятилетий, с момента выпуска первого «винила» фирмой Columbia в 1948 г., прогресс в этой области шел в сторону не усовершенствования носителей, а конструирования устройств воспроизведения, оказывающих как можно меньшее давление на иглу.

Устройства для воспроизведения информации

Новый аналоговый формат записи звука или видео всегда предполагал и новое устройство для его воспроизведения. При необходимости приходится это устройство искать, а еще лучше – предусматривать возможность чтения старых и новых форматов в одном устройстве. Прогресс электроники сделал этот процесс простым для производителя, но усложнил его для пользователя. Ярким примером могут служить бытовые видеомагнитофоны. Традиционно они поддерживают не менее пяти стандартов интерфейсов: компонентный, композитный, S-Video, SCART и HDMI (причем давно устаревший S-Video встречается в нескольких типах разъемов). Компьютерные видеоустройства расширяют это разнообразие до полной необозримости. В них можно встретить и аналоговый VGA, и различные модные цифровые интерфейсы, среди которых есть распространенные DVI (причем трех разновидностей – DVI-A, DVI-I и DVI-D) и IEEE 1394, и экзотические DisplayPort, DVB, SDI и UDI.

К счастью, многие из этих интерфейсов совместимы между собой на уровне переходников. Например, можно превратить цифровой DVI в цифровой же HDMI, а также аналоговый VGA в аналоговый S-Video. Но, к сожалению, столь простым способом нельзя превратить аналоговый интерфейс в цифровой. Поэтому приходится сохранять в составе видеоустройств множество интерфейсов, зачастую уже и не нужных, зато обеспечивающих совместимость со всем имеющимся оборудованием, включая древние телеприемники начала 1980-х годов.

Такие же трудности могут возникнуть и с компьютерными цифровыми данными – за последние 20 лет успели уйти в прошлое не только дискеты, но и стримеры, и магнитооптические диски (Iomega Zip и др.), успевшие распространиться в среде науки и финансов. В 2008 г. в Национальном агентстве США по аэронавтике и исследованию космического пространства (NASA) обсуждались планы новых лунных экспедиций. Ученым потребовались данные о свойствах лунной пыли, собранные во время экспедиций «Апполонов» в конце 1960-х годов. Эти сведения были записаны на 173 магнитных лентах, но их оригиналы в NASA оказались утраченными. К счастью, копии сохранились в Сиднейском университете. Однако для их чтения был нужен специальный накопитель на магнитных лентах – IBM 729 Mark V, выпускавшийся в 1950--1960-е годы. Оказалось, что некогда популярные ленты (с многодорожечным параллельным форматом представления данных) прочесть уже не на чем. Впрочем, на счастье исследователей, пригодный экземпляр накопителя сыскался в Австралийском компьютерном музее.

Похожая история произошла и с американскими архивистами в 1990-е годы, когда они вознамерились ознакомиться с данными переписи населения 1960 г., хранившимися на магнитных носителях. Нашлось всего два компьютера в мире, способных прочесть эти данные. Один из них находился в США, другой - в Японии. Наученная этим опытом, крупнейшая в мире Библиотека Конгресса (США) создала специальное подразделение, в котором хранятся устройства для чтения информации с устаревших электронных носителей. Однако нет никакой уверенности, что где-нибудь в архиве не отыщется носитель в таком оригинальном формате, что для его чтения не сохранилось ни устройств, ни программного обеспечения.

Цифровые носители

Цифровые носители, пришедшие на смену всем этим виниловым дискам, пленкам и магнитофонным лентам, в плане долговечности также оставляют желать лучшего – многие из них выходят из строя просто при хранении. Даже если вы найдете считывающий привод для 5-дюймовых дискет, они, скорее всего, уже не прочитаются – ни вовсе, ни частично. Правда, мне не так давно пришлось прочесть 5-дюймовую дискету «Изот» болгарского производства, записанную на компьютере «Правец-16» в конце 1980-х годов. Представьте себе, данные на ней оказались целехоньки (не зря же компьютерные компоненты советской эпохи проходили военную приемку!), но в общем случае рассчитывать на такое не стоит. А 3-дюймовые дискеты, более стойкие в процессе эксплуатации, все же менее долговечны, чем 5-дюймовые, поскольку информация на них записана с более высокой плотностью.

Жесткий диск (винчестер) имеет срок службы около пяти лет, хотя производители декларируют гораздо больший. Нередко он выходит из строя еще быстрее – особенно когда греется в процессе работы. И такое его состояние скорее обычное, чем исключение. Исследователи из университета Карнеги-Меллона еще в 2007 г. обследовали примерно 100 тыс. дисков разных производителей и обнаружили, что основной показатель надежности – среднее время наработки на отказ (mean-time before failure, MTBF) - завышается производителями приблизительно в 15 раз. По их данным, ежегодно выходит из строя не 1% дисков, а 2–4%, причем пики отказов наблюдаются в первый год эксплуатации, а также после пятого–седьмого года. Производителей, чьи диски показали самый высокий процент отказов, исследователи не назвали. Но оказалось, что накопители, как ориентированные на массовый рынок, так и предназначенные для профессионального сектора (а следовательно, более дорогие), позиционируемые не только как высокопроизводительные, но и как обладающие повышенной надежностью, в действительности демонстрируют сходные показатели.

Самыми стойкими из оптических дисков (CD и DVD) считаются штампованные. Они, как заявляют изготовители, способны работать без сбоев более 30 лет при хранении в хороших условиях. А записываемые и особенно перезаписываемые CD и DVD могут потерять данные уже в первое десятилетие своего существования. Причем из-за особенностей представления информации звуковые компакты (Audio CD) надежнее дисков с данными, содержащих настоящую файловую систему.

Можно считать, что долговечность флеш-накопителей информации такая же, как у штампованных оптических дисков. Следует отметить, что надежность хранения информации на флешках значительно увеличивается, если ее периодически, как минимум один раз в несколько лет, перезаписывать заново.

Форматы данных

Как уже было отмечено, для аналоговых носителей видео и звука проблема форматов данных – это поиск нужного оборудования. Достаточно вспомнить, что с момента изобретения видеомагнитофона в 1956 г. в видеозаписи использовалось около 30 различных несовместимых форматов, что вынуждает вещательные организации и архивы «на всякий случай» хранить множество аппаратов. Для цифровых форматов, существующих в виде компьютерных файлов (т.е. для всех, кроме классического Audio CD, где файлы как таковые отсутствуют), чтение устаревших или редких форматов обеспечивается проще. Кроме того, аналоговое преобразование и копирование данных всегда сопровождаются потерями информации. А преобразование данных из одного цифрового формата в другой – полностью автоматизируемая процедура, и этот процесс, в принципе, может протекать без потерь. Потери могут сопровождать преобразования сжатых форматов, но они не так существенны, как при копировании аналоговой информации, и их уровень легко контролируется.

Простота чтения и преобразования цифровых форматов оборачивается тем, что их становится слишком много. Например, одних архиваторов, помимо общеизвестных ZIP и RAR, существует несколько десятков разновидностей. Причем некоторые из них, создававшиеся в расчете на конкретное применение, вне определенной ограниченной области не употребляются. Но если для носителей старых типов понадобится специальное устройство чтения (возможно, подобно магнитофонам или кинопленке, основанное на уже не использующихся физических принципах), то для чтения файла старого формата нужна лишь соответствующая программа. И если она отсутствует, то ее несложно разыскать, в крайнем случае – написать заново, что обойдется дешевле создания целого устройства воспроизведения.

Чем больший объем занимает данная разновидность информации, тем большее разнообразие типов цифровых данных наблюдается для нее. На практике употребляется всего несколько текстовых форматов – «чистый текст», пара-тройка форматов Microsoft (DOC, DOCX и RTF), Open Document Format (ODF), а также веб-формат HTML и еще «иллюстрированный текст» PDF. Остальные разновидности представления текста относятся в основном к различным фирмам–производителям электронных ридеров, наплодившим около полутора десятков разных форматов, приспособленных к конкретным устройствам. И потому в быту сейчас уже совсем редко возникают проблемы с текстовыми форматами – в основном они касаются преобразования различных языковых кодировок.

Сравнительно немного форматов употребляется на практике и для представления статических изображений. Их список практически исчерпывается пятью разновидностями: TIFF, JPEG, GIF, BMP и PNG. Остальные существующие форматы в основном привязаны к конкретным областям применения или графическим программам. Нужно отметить, что для звука форматов существенно больше, чем для текста и изображений, а для представления видео разнообразие еще больше, причем именно среди употребляющихся на практике. Это связано с тем, что звук и видеофайлы занимают значительно больший объем, чем тексты или статические изображения, и для представления в приемлемом для пользовательских целей объеме их приходится сжимать различными методами. При этом методы сжатия различаются в зависимости от цели кодировки – в Интернете видео и звук надо представить максимально компактно, даже жертвуя качеством. А вот для записи на DVD и тем более в формате Blu-Ray можно размахнуться и пошире.

И потому не так уж редки случаи, когда видеодиск, записанный на бытовом плейере, отказывается проигрываться на компьютере, или наоборот. Кроме того, следует учитывать, что распространенные типы видеофайлов вроде AVI, OGG или MPEG-4 – это еще не форматы, а так называемые «контейнеры». Контейнер представляет собой оболочку для собственно содержимого, которое может быть представлено в самых разных форматах. Контейнерами являются не только видеоформаты, но и многие привычные типы текстовых, звуковых файлов или изображений (скажем, PDF, WAV или BMP – также контейнеры). Именно в области видеопродукции проблема разнообразия форматов стоит наиболее остро. Скажем, разработчики стандарта MPEG-4 оставили частным разработчикам определенную свободу в определении способов и приемов сжатия видеоряда. Потому не следует удивляться тому, что видеодиск, записанный на одном компьютере, не «захочет» воспроизводиться на другом, на котором отсутствует подходящая для данного формата программа-кодек.

Архивисты относительно просто и дешево решают проблему форматов. Путем проб и ошибок хранители архивов развитых стран выработали ряд решений, и главным из них стало хранение информации в машинно-независимых стандартизированных формах. Базовым таким форматом стал, естественно, текстовый – то, что в компьютерных программах называется «чистый текст». Цифровые таблицы очищаются от всех дополнительных данных, которыми они сопровождаются при создании в конкретных программах вроде Excel, и представляются в виде последовательности чисто текстовых знаков.

Впрочем, в архивах не исключается и использование собственных форматов. На входе вся документация преобразуется в формат, оптимальный для хранения, а на выходе, при передаче конкретному пользователю, производится обратная процедура - конвертирование данных в формат, наиболее удобный пользователю.

Вывод простой: цифровые данные на современных носителях имеют огромное преимущество перед старинными аналоговыми – они просто и быстро переписываются без потерь, причем копия идентична оригиналу. Потому долговечность цифровых носителей не так важна, поскольку своевременная перезапись информации позволяет хранить ее практически вечно. Данные стоит хранить в цифровом виде на современных носителях и менять последние, когда возникает опасность их устаревания и исчезновения из обихода. Это также требует времени и средств, но гораздо меньших, чем создание условий для хранения уникальной информации, записанной на аналоговых носителях в предыдущие века.

Как же все это делать, чтобы было и надежно, и удобно?

Что делать ?

Для воспроизведения устаревших носителей информации в быту решение, примененное в Библиотеке Конгресса, практически неприемлемо. Никто не будет хранить огромный катушечный магнитофон или кинопроектор только для того, чтобы раз в несколько лет, под настроение, прослушать старинные записи или просмотреть семейную кинохронику. Единственный способ обойти это препятствие – не пожалеть времени и денег, оцифровать архивы и хранить их на современных носителях в цифровой форме. Для государственных и других крупных архивов это тоже единственный путь для сохранения старых оригиналов, представленных в аналоговых форматах. Мало того, преобразование в «цифру» делает информацию доступнее – появляется возможность ее обнародовать, пересылать и копировать без риска для оригинала (вспомним, что кинопленки и магнитные записи деградируют при копировании, бумага изнашивается и рвется, а краски на старинных картинах выцветают от экспозиции на свету).

Объем работы в этой области предстоит грандиозный, и во всем мире оцифрована пока лишь малая часть старой информации. Заметим, что значительное количество информации продолжает выпускаться в традиционной форме. Например, отечественное книгоиздание выпускает примерно 50–60 тыс. наименований книжной продукции в год в печатном виде, в то время как крупнейшие русскоязычные электронные библиотеки (вроде знаменитого «Либрусека») содержат не больше 100–200 тыс. оцифрованных книг, т.е. объем выпуска за два-три года. Следовательно, огромная часть информационного массива в недалеком будущем, когда состоится переход к электронным носителям, скорее всего, останется недоступной. Кстати, существующее законодательство об интеллектуальной собственности отнюдь не облегчает эту задачу, а скорее мешает ее решению.

Постепенно мир движется к информации без носителей. Многие компании предлагают хранение данных в облаке, т.е. в распределенном хранилище без определенного местонахождения. Но едва ли стоит доверять таким сервисам полностью. Хранилище, управляемое из единого центра, не намного надежнее, чем локальное хранение копий на компьютерах пользователей, что легко показать на примерах.

На массовых электронных почтовых службах или на таких сервисах, как Google Docs, постоянно случаются сбои, прерывающие доступ. Глобальный сбой подобных служб с безвозвратной утерей данных – сценарий гипотетический, но отнюдь не фантастический. Кроме того, централизованное хранилище в любой момент можно отключить от доступа пользователей, и это уже политический вопрос. Кстати, вопрос безопасности в таких хранилищах в принципе не решаем: любую компьютерную защиту можно взломать.

А вот еще сценарий, от которого не застрахован никто: недавно мне случилось безвозвратно потерять архив весьма ценных фотографий, сделанных по моей просьбе на конференции, где в одном месте собрались многие заслуженные деятели компьютерной отрасли еще советских времен. У девушки-фотографа полетел диск, на котором хранились снимки. При этом копий ни она, ни я не делали, понадеявшись на фотохостинг Picasa компании Google. Но к моменту обнаружения поломки выложенная там галерея оказалась уже недоступной, потому что никто не озаботился обратить внимание на ограниченность срока хранения. Стечение обстоятельств, как видите, совсем не уникальное.

Из этих примеров следует, в общем-то, простой, хотя и довольно громоздкий в исполнении рецепт для тех, кто озабочен сохранностью своих архивов.

Для начала нужно все аналоговые оригиналы перевести в цифровой вид. Чаще всего это проще сказать, чем сделать. Так, оцифровку фотографий (включая и негативы со слайдами) сейчас предлагают практически на каждом углу, а вот с любительскими кинопленками и магнитофонными записями ситуация уже гораздо сложнее и выйти из нее значительно дороже.

Однако, решив эту проблему, стоит вспомнить, что цифровая форма сама по себе еще не гарантирует сохранности. Долговечность цифровых носителей даже меньше, чем у традиционной бумаги или пленки, они лишь позволяют без лишних затрат и усилий сделать сколько угодно копий без потери качества. Вот этим преимуществом цифры и стоит воспользоваться на полную катушку.

Храните ценные данные в виде не менее чем трех копий. Одну рабочую, с которой вы манипулируете ежедневно, и еще одну для оперативного восстановления единичных папок и файлов, причем разместите ее на отдельном жестком диске (или даже в отдельном компьютере). И, наконец, еще одну копию стоит хранить в виде образа целого файлового раздела для аварийного восстановления при капитальных поломках. Такой «бэкап» удобно хранить в специальном файловом хранилище с RAID-массивом (известном под названием NAS – Network Attached Storage, сетевое подключаемое хранилище). Но если интернет-канал позволяет, то, конечно, неплохо закачивать образ и куда-нибудь в облако, необходимо только следить за его сохранностью и своевременным обновлением. Тогда у вас есть шанс восстановить данные даже в случае, если при пожаре или другом стихийном бедствии все ваши устройства будут уничтожены.

Информационные носители распределяют по четырем параметрам: природа носителя, его назначение, число циклов записи и долговечность.

По природе носители информации бывают вещественно-предметными и биохимическими. Первые - это те, которые можно потрогать, взять в руки, перенести с места на место: письма, книги, флешки, диски, находки археологов и палеонтологов. Вторые имеют биологическую природу и физически к ним прикоснуться нельзя: геном, любая его часть - РНК, ДНК, гены, хромосомы.

По назначению носители информации распределяют на специализированные и широкого назначения. Специализированные - это те, которые созданы только для одного вида хранения информации. Например, для цифровой записи. А широкое назначение - это носитель, на который можно записать информацию разными способами: та же бумага, на ней и пишут, и рисуют.

По числу циклов записи носитель бывает однократным или многократным. На первый можно записать информацию лишь один раз, на второй - много. Пример однократного информационного носителя - диск CD-R, а диск CD-RW уже относится к многократным.

Долговечность носителя - это срок, который он будет хранить информацию. Те, что считаются кратковременными, неизбежно разрушаются: если написать что-нибудь на песке у воды, волна смоет надпись через полчаса или час. А долговременные может уничтожить только случайное обстоятельство - сгорит библиотека или флешка вдруг упадет в канализацию и пролежит в воде много лет.

Делают носители информации из четырех типов материала:

  • бумага, из которой раньше делали перфокарты и перфоленты, а страницы книг делают и теперь;
  • пластик для оптических дисков или бирок;
  • магнитные материалы, нужные для магнитных лент;
  • полупроводники, которые используют для создания компьютерной памяти.

В прошлом список был богаче: информационные носители делали из воска, ткани, из бересты, глины, камня, кости и многого другого.

Чтобы изменить структуру материала, из которого создан информационный носитель, используют 4 типа воздействий:

  • механическое - шитье, резьбу, сверление;
  • электрическое - электрические сигналы;
  • термическое - выжигание;
  • химическое - травление или окрашивание.

Из носителей прошлого самыми ходовыми были перфокарты и перфоленты, магнитные ленты, а потом и 3,5-дюймовые дискеты.

Перфокарты делали из картона, потом протыкали в нужных местах так, что дырочки в картоне напоминали узор, и считывали с них информацию. А перфоленты появились позже, были бумажными и использовались в телеграфе.

Магнитные ленты свели популярность перфокарт и перфолент к нулю. Такие ленты могли и хранить, и воспроизводить информацию - проигрывать записанные песни, к примеру. В это же время появились магнитофоны, на которых можно было слушать и кассеты, и катушки. Но срок годности у магнитных лент был скромный - до 50 лет.

Когда появились дискеты, магнитные ленты ушли в прошлое. Дискеты были маленькие, 3,5 дюйма, и могли хранить до 3 мб информации. Однако они были чувствительными к магнитным воздействиям, да и емкость их не успевала за потребностями людей - нужны были носители, которые могли хранить намного больше данных.

Сейчас таких носителей много: внешние жесткие диски, оптические диски, флешки, HDD боксы и удаленные сервера.

Внешние жесткие диски

Внешние жесткие диски упакованы в компактный корпус, где есть один или два USB-адаптера и система защиты от вибрации. Они могут хранить до 2 ТБ информации.

  • легко подключить: не надо выключать компьютер, возиться с кабелем питания и sata - на внешних жестких дисках есть интерфейс USB0, подключаются они как обычные флешки;
  • легко перевозить: такие девайсы очень маленькие, их запросто можно взять в путешествие, в гости, носить можно даже в кармане, а еще, их довольно просто подключить к домашнему кинотеатру;
  • к компьютеру можно подключить столько жестких дисков, сколько есть USB-портов.
  • скорость передачи информации ниже, чем по sata-подключению;
  • нужна повышенная мощность питания, поэтому требуется двойной USB-кабель;
  • корпус пластиковый, а значит, во время работы девайся слышно щелчки или другой шум.

Однако если диск будет в прорезиненном металлическом корпусе, то шума никто не услышит.

Внешние жесткие диски бывают портативными (2.5) и настольными (3.5). Интерфейс может быть экзотическим - firewire или блютуз, но такие дороже, встречаются они реже и к ним нужен дополнительный блок питания.

Оптические диски

Это компакт-диски, лазерные диски, HD-DVD, мини-диски и Blu-ray. Информация с таких дисков читается с помощью оптического излучения, поэтому их так и назвали.

Оптический диск насчитывает четыре поколения:

  • первое - это лазерный, компакт- и мини-диск;
  • второе - DVD и CD-ROM;
  • третье - HD-DVD и Blu-ray;
  • четвертое - Holographic Versatile Disc и SuperRens Disc.

Компакт-дисками сейчас почти не пользуются. У них маленький объем - 700 МБ, а данные с них считывает лазерный луч. Компакт-диски разделялись на два вида: те, на которые нельзя было ничего записать (CD), и те, на которые записывать было можно (CD-R и CD-RW).

DVD-диски внешне такие же, как компакт-диски, но объем у них значительно больше. У DVD-дисков есть несколько форматов, самыми популярными считаются DVD-5 на 4,37 ГБ и DVD-9 на 7,95 ГБ. Такие диски тоже бывают R - для однократной записи, и RW - для многократной записи.

Диски Blu-ray, имея такой же размер, как CD и DVD, вмещают гораздо больше данных - до 25 и до 50 ГБ. До 25 - это диски с одним слоем записи информации, а до 50 - с двумя. И они также подразделяются на R - однократную запись, и RE - запись многократную.

Флешки

Флеш-накопитель - это очень маленькое устройство, которое с памятью до 64 ГБ и больше. К компьютеру флешки подключают через USB-порт, скорость чтения и записи у них высокая, корпус пластиковый. Внутри у флешки электронная плата с чипом памяти.

Флешку можно подключить к компьютеру и телевизору, а если она в формате Micro-cd, то и к планшету или смартфону. Царапины и пыль, которые могли уничтожить оптические диски, флешке не страшны - у нее небольшая восприимчивость к внешним воздействиям.

HDD боксы

Это вариант, который позволяет использовать обычные жесткие диски стационарных компьютеров как внешние. HDD бокс - это пластиковая коробка с контроллером USB, куда можно поместить обычный жесткий диск и легко перенести информацию напрямую, избегая дополнительного копирования и вставки.

HDD бокс гораздо дешевле внешнего жестка диска, и очень пригодится, если нужно перенести на другой компьютер большое количество информации или даже почти весь раздел жесткого диска.

Удаленные сервера

Это виртуальный способ хранения данных. Информация будет на удаленном сервере, подключиться к которому можно с компьютера, и с планшета, и со смартфона, надо только иметь доступ в интернет.

С физическими носителями информации всегда есть риск потерять данные, поскольку флешка, жесткий или оптический диск могут сломаться. Но с удаленным сервером такой проблемы нет - информация хранится надежно и так долго, как это нужно пользователю. К тому же на удаленных серверах есть резервное хранилище на случай непредвиденных ситуаций.

Понравилось? Лайкни нас на Facebook